Muutke küpsiste eelistusi

Modeling and Computation in Vibration Problems, Volume 1: Numerical and semi-analytical methods [Kõva köide]

Edited by (University of Salento (Italy)), Edited by (Texas A&M University Aerospace Engineering), Edited by (National Institute of Technology Rourkela (India))
  • Formaat: Hardback, 468 pages, kõrgus x laius x paksus: 254x178x25 mm, kaal: 1025 g, With figures in colour and in black and white; 80 Illustrations
  • Sari: IOP ebooks
  • Ilmumisaeg: 22-Dec-2021
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 0750334819
  • ISBN-13: 9780750334815
  • Formaat: Hardback, 468 pages, kõrgus x laius x paksus: 254x178x25 mm, kaal: 1025 g, With figures in colour and in black and white; 80 Illustrations
  • Sari: IOP ebooks
  • Ilmumisaeg: 22-Dec-2021
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 0750334819
  • ISBN-13: 9780750334815
Preface xii
Editor biographies xvi
List of contributors
xx
1 Higher order theory for the modal analysis of doubly-curved shells with lattice layers and honeycomb cores
1(1)
Francesco Tornabene
Matteo Viscoti
Rossana Dimitri
1.1 Introduction
1(4)
1.2 Equivalent single layer shell theory
5(17)
1.2.1 Geometrical description of the shell
5(1)
1.2.2 Kinematic formulation
6(3)
1.2.3 Homogenization of the lattice core and equivalent elastic behaviour
9(7)
1.2.4 Governing equations
16(4)
1.2.5 Assembly procedure of the discrete governing equations
20(2)
1.3 Numerical applications
22(21)
1.4 Conclusions
43
References
44
2 Particle impact damping technology: modelling and applications
1(1)
Nazeer Ahmad
Ankur Kumar Gupta
Sujata
Poomani D
2.1 Introduction
1(1)
2.2 Mathematical formulations
2(5)
2.2.1 Impact damping force and its computation
6(1)
2.3 Numerical simulations
7(7)
2.3.1 Impact of a single particle with the container wall
7(1)
2.3.2 Dissipation in impact damping device
7(7)
2.4 Conclusions
14
References
16
3 Vibration of thick functionally graded materials skew plates based on a new shear deformation plate theory
1(1)
K. K. Pradhan
S. Chakraverty
3.1 Introduction
1(2)
3.2 Shear deformation plate theory
3(2)
3.3 Constitutive relations
5(1)
3.4 Mechanical energies
6(6)
3.5 Rayleigh--Ritz approximation
12(2)
3.6 Convergence and comparison studies
14(1)
3.7 Numerical results and discussion
14(10)
3.7.1 Effect of power-law exponent of SDPT (n)
14(1)
3.7.2 Effect of aspect ratio (μ)
15(1)
3.7.3 Effect of slenderness ratio (δ)
16(8)
3.7.4 Effect of power-law index of gradation (k)
24(1)
3.8 Concluding remarks
24
References
27
4 Advanced mechanical modeling of functionally graded carbon nanotubes-reinforced composite materials and structures
1(1)
Francesco Tornabene
Rossana Dimitri
Salvatore Brischetto
4.1 Introduction
2(2)
4.2 Theoretical formulation
4(18)
4.2.1 Higher-order theory of shell structures
4(5)
4.2.2 Mechanical properties for FGMs
9(1)
4.2.3 Mechanical properties for CNTs
10(7)
4.2.4 Governing equations of the problem
17(5)
4.3 A general view on the GDQ-based numerical method
22(8)
4.4 Numerical applications
30(19)
4.4.1 Free vibration problems
30(11)
4.4.2 Critical speed evaluation
41(8)
4.5 Conclusions
49
References
49
5 Vibration of micro/nano structural members: a discrete energy-based formulation
1(1)
Mukul Saxena
Saikat Sarkar
5.1 Introduction
1(1)
5.2 Euler--Bernoulli beam theory
2(5)
5.3 Shear deformable beam or Timoshenko beam
7(5)
5.4 Kirchhoff--Love theory of thin plates/classical plate theory
12(4)
5.5 Mindlin--Reissner plate theory (MRPT)
16(5)
5.6 Non-local theories from discrete to continuum limits
21(1)
5.7 Non-local theory for Euler---Bernoulli beam
22(5)
5.8 Non-local theory for Timoshenko beam
27(5)
5.9 Conclusion
32
References
32
6 Effect of thermal environment on nonlinear flutter of laminated composite plates reinforced with graphene nanoplatelets
1(1)
Hulun Guo
Tianzhi Yang
Krzysztof Kamil Zur
J. N. Reddy
A. J. M. Ferreira
Symbols
1(2)
6.1 Governing equations
3(8)
6.1.1 Material properties of GPLRCs
4(1)
6.1.2 Model of matrix cracks
5(2)
6.1.3 First-order shear deformation plate theory
7(2)
6.1.4 Solution procedure via the IMLS-Ritz method
9(2)
6.2 Flutter of matrix cracked GPLRC plate
11(8)
6.2.1 Solution of governing equations
11(2)
6.2.2 Comparison and convergence studies
13(1)
6.2.3 Numerical results and discussion
14(5)
6.3 Nonlinear thermal flutter of GPLRC plate
19
6.3.1 Discrete solution of governing equations
19(3)
6.3.2 Comparison and convergence studies
22(1)
6.3.3 Numerical results and discussion
23(7)
References
30
7 On forced vibrations of piezo-flexomagnetic nano-actuator beams
1(1)
Mohammad Malikan
Victor A. Eremeyev
7.1 Flexomagneticity
1(1)
7.2 Mathematical modelling
2(5)
7.3 Solution process
7(1)
7.4 Validity
8(1)
7.5 Discussion and results
9(6)
7.5.1 Resonance analysis
9(3)
7.5.2 Magnetic field effect
12(1)
7.5.3 Dynamic load impact
13(1)
7.5.4 Small-scale parameters effect
13(2)
7.6 Conclusion
15
References
16
8 Vibration of size-dependent carbon nanotube-based biosensors in liquid
1(1)
Fatemeh Sheikhmamoo
Hamid Mohammad Sedighi
Mohammad Shishesaz
8.1 Introduction
2(12)
8.1.1 The modified couple stress theory
3(3)
8.1.2 Surface elasticity theory
6(5)
8.1.3 Formulation of the fluid pressure on a nano-biosensor
11(3)
8.2 Solution
14(6)
8.2.1 The static pull-in instability of the biosensor using the MAD method
14(3)
8.2.2 Dynamic deflection of the biosensor using isogeometric analysis
17(1)
8.2.3 Knot vectors and basic functions
17(1)
8.2.4 B-spline curve
18(2)
8.3 Results and discussion
20(7)
8.3.1 Validate of the static analysis
20(3)
8.3.2 Validation of the dynamic analysis
23(4)
8.4 Conclusion
27
References
29
9 Continuum 3D and 2D shell models for free vibration analysis of single-walled and double-walled carbon nanotubes
1(1)
Salvatore Brischetto
Francesco Tornabene
Rossana Dimitri
9.1 3D continuum shell model
2(17)
9.1.1 3D equilibrium equations in orthogonal mixed curvilinear coordinates
2(3)
9.1.2 3D geometrical and constitutive relations
5(2)
9.1.3 Closed form solution for shell 3D equilibrium equations
7(3)
9.1.4 Layer-wise solution for multilayered structures using the exponential matrix methodology
10(8)
9.1.5 Particular case of geometrical relations and 3D equilibrium equations for cylinders in order to analyze carbon nanotubes
18(1)
9.2 Results
19(26)
9.2.1 Free frequencies and vibration modes for SWCNTs
20(5)
9.2.2 Free frequencies and vibration modes for DWCNTs
25(5)
9.2.3 Free frequencies and vibration modes for SWCNTs and DWCNTs: analytical versus numerical models
30(15)
9.3 Main conclusions
45
References
48
10 Crack and interface interaction under quasi-static and dynamic loading
1(1)
Dhaladhuli Pranavi
K. S. S. Reddy
Amirtham Rajagopal
J. N. Reddy
Symbols
1(1)
10.1 Introduction
2(2)
10.2 Methodology
4(1)
10.3 FEM formulation
5(1)
10.3.1 Exponential cohesive zone law
5(1)
10.3.2 Displacement jump
6(1)
10.4 Numerical examples
6(4)
10.4.1 Stiff--soft interface in a micro structure of a composite system
6(2)
10.4.2 Compact tension tests in concrete
8(2)
10.5 Conclusions
10
References
10
11 Vibration of compliant robotic grippers and wrists
1(1)
Debanik Roy
11.1 Introduction
1(5)
11.2 Overview on various indigenous designs of the compliant robotic grippers
6(15)
11.2.1 Metrics of the indigenous design
6(3)
11.2.2 Classification of the indigenous designs
9(1)
11.2.3 Firmware of the flat-jaw type CRGs
10(4)
11.2.4 Firmware of the curvilinear-jaw type CRGs
14(2)
11.2.5 Firmware of the contoured-jaw type CRGs
16(3)
11.2.6 Miniaturized CRGs: a wider horizon
19(2)
11.3 Indigenous design of the compliant robotic wrists
21(8)
11.3.1 Fundamental facets of the indigenous design
21(3)
11.3.2 An overview on the varieties of indigenous designs
24(1)
11.3.3 Details of the firmware
25(4)
11.4 Grasp-induced vibration models of the compliant robotic grippers
29(18)
11.4.1 An overview of vibration synthesis
29(1)
11.4.2 Paradigms of grasp synthesis
30(1)
11.4.3 Development of the grasp models
31(13)
11.4.4 Facets on real-time dynamics of grasp model
44(3)
11.5 Vibration signature of the compliant robotic grippers and compliant wrists
47(16)
11.5.1 Paradigms of vibration signature
47(1)
11.5.2 Development of spring-induced geometric models
48(6)
11.5.3 Development of spring-supported vibration model
54(3)
11.5.4 Modeling paradigms and control dynamics for secondary-stage vibration
57(2)
11.5.5 Modeling force-displacement tuple
59(1)
11.5.6 Modeling of real-time control dynamics
60(3)
11.6 Development of turning model for vibration synthesis of compliant robotic gripper and wrist system
63(4)
11.6.1 Facets of vibration synthesis
63(1)
11.6.2 Formulation of the turning model
64(1)
11.6.3 Accumulation of vibration in robotic wrist
65(2)
11.7 Case-studies and experimental results
67(5)
11.7.1 Robotic system used for the case-study
67(1)
11.7.2 Experimental synopsis
67(2)
11.7.3 Sensory instrumentation and test results
69(3)
11.8 Conclusions
72
Acknowledgments
72(1)
References
72
12 A study on mode shape-based approaches for health monitoring of a reinforced concrete beam under transverse loading
1(1)
S. K. Panigrahi
Ajay Chaurasia
12.1 Preamble
1(3)
12.2 Mathematical model
4(1)
12.3 Illustrative example
4(3)
12.4 Experimental set-up and analysis
7(3)
12.4.1 Description of beam specimens
7(1)
12.4.2 Experimental methodology and instrumentation
8(1)
12.4.3 Health monitoring of RC beam
9(1)
12.5 Results and discussion
10(2)
12.6 Conclusions
12
References
12
13 Modeling of honeycomb sandwich structure for spacecraft: analysis and testing
1(1)
Ankur Kumar Gupta
Nazeer Ahmad
Akash Aditya
D. Poomani
13.1 Introduction
1(3)
13.1.1 Types of sandwich core materials
3(1)
13.1.2 Honeycomb core
3(1)
13.2 Equivalent mechanical properties of honeycomb sandwich panels
4(6)
13.2.1 Analytical formulations of the equivalent model of honeycomb core
7(3)
13.2.2 Equivalent properties prediction using analytical formulations
10(1)
13.3 Finite element modeling of the honeycomb core sandwich laminates
10(2)
13.4 Modal study of honeycomb beam
12
13.4.1 Experimental investigation
13(2)
13.4.2 Modal analysis of honeycomb sandwich beam using finite element methods
15(4)
References
19
14 Numerical analysis of Qutb Minar using non-linear plastic-damage macro model for constituent masonry
1(12)
Ajay Chourasia
S. K. Panigrahi
14.1 Preamble
1(1)
14.2 Details of modeling
2(5)
14.2.1 Geometric data
2(1)
14.2.2 Structural idealization
3(1)
14.2.3 Plastic damage macro model and material properties
4(3)
14.3 Results and discussions
7(5)
14.3.1 Free vibrational analysis
7(3)
14.3.2 Simulation of seismic vibrations
10(2)
14.4 Conclusions
12(1)
References 13