Muutke küpsiste eelistusi

Modeling Decisions for Artificial Intelligence: 19th International Conference, MDAI 2022, Sant Cugat, Spain, August 30 September 2, 2022, Proceedings 1st ed. 2022 [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 203 pages, kõrgus x laius: 235x155 mm, kaal: 349 g, 42 Illustrations, color; 16 Illustrations, black and white; XVIII, 203 p. 58 illus., 42 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 13408
  • Ilmumisaeg: 27-Jul-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031134478
  • ISBN-13: 9783031134470
Teised raamatud teemal:
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 203 pages, kõrgus x laius: 235x155 mm, kaal: 349 g, 42 Illustrations, color; 16 Illustrations, black and white; XVIII, 203 p. 58 illus., 42 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 13408
  • Ilmumisaeg: 27-Jul-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031134478
  • ISBN-13: 9783031134470
Teised raamatud teemal:
This book constitutes the refereed proceedings of the 19th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2022, held in Sant Cugat, Spain, during August - September 2022.

The 16 papers presented in this volume were carefully reviewed and selected from 41 submissions. 

The papers discuss different facets of decision processes in a broad sense and present research in data science, machine learning, data privacy, aggregation functions, human decision-making, graphs and social networks, and recommendation and search. They were organized in topical sections as follows: Decision making and uncertainty; Data privacy; Machine Learning and data science.

Decision making and uncertainty.- Optimality Analysis for Stochastic LP
Problems.- A Multi-Perceptual-Based Approach for Group Decision
Aiding.- Probabilistic Judgement Aggregation by Opinion
Update.- Semiring-valued fuzzy rough sets and colour segmentation.- Data
privacy.- Bistochastic privacy.- Improvement of Estimate Distribution with
Local Differential Privacy.- Geolocated Data Generation and Protection Using
Generative Adversarial Net-works.- Machine Learning and data science.- A
Strategic Approach based on AND-OR Recommendation Trees for Updating Obsolete
Information.- Identification of Subjects Wearing a Surgical Mask from their
Speech by means of x-vectors and Fisher Vectors.- Measuring Fairness in
Machine Learning models via Counterfactual Examples.- Re-Calibrating Machine
Learning Models using Confidence Interval Bounds.- An Analysis of
Byzantine-Tolerant Aggregation Mechanisms on Model Poisoning in Federated
Learning.- Effective Early Stopping of Point Cloud Neural
Networks.- Representation and Interpretability of IE Integral Neural
Networks.- Deep Attributed Graph Embeddings.- Estimation of Prediction Error
with Regression Trees.