Muutke küpsiste eelistusi

Modeling and Design Techniques for RF Power Amplifiers [Kõva köide]

  • Formaat: Hardback, 224 pages, kõrgus x laius x paksus: 243x154x19 mm, kaal: 502 g
  • Sari: Wiley IEEE
  • Ilmumisaeg: 08-Feb-2008
  • Kirjastus: Wiley-Blackwell (an imprint of John Wiley & Sons Ltd)
  • ISBN-10: 0471717460
  • ISBN-13: 9780471717461
Teised raamatud teemal:
  • Kõva köide
  • Hind: 138,93 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Hardback, 224 pages, kõrgus x laius x paksus: 243x154x19 mm, kaal: 502 g
  • Sari: Wiley IEEE
  • Ilmumisaeg: 08-Feb-2008
  • Kirjastus: Wiley-Blackwell (an imprint of John Wiley & Sons Ltd)
  • ISBN-10: 0471717460
  • ISBN-13: 9780471717461
Teised raamatud teemal:
Achieve higher levels of performance, integration, compactness, and cost-effectiveness in the design and modeling of radio-frequency (RF) power amplifiers RF power amplifiers are important components of any wireless transmitter, but are often the limiting factors in achieving better performance and lower cost in a wireless communication system-presenting the RF IC design community with many challenges. The next-generation technological advances presented in this book are the result of cutting-edge research in the area of large-signal device modeling and RF power amplifier design at the Georgia Institute of Technology, and have the potential to significantly address issues of performance and cost-effectiveness in this area. Richly complemented with hundreds of figures and equations, Modeling and Design Techniques for RF Power Amplifiers introduces and explores the most important topics related to RF power amplifier design under one concise cover. With a focus on efficiency enhancement techniques and the latest advances in the field, coverage includes:* Device modeling for CAD* Empirical modeling of bipolar devices* Scalable modeling of RF MOSFETs* Power amplifier IC design* Power amplifier design in silicon* Efficiency enhancement of RF power amplifiers The description of state-of-the-art techniques makes this book a valuable and handy reference for practicing engineers and researchers, while the breadth of coverage makes it an ideal text for graduate- and advanced undergraduate-level courses in the area of RF power amplifier design and modeling.
Preface ix
Introduction
1(14)
Semiconductor Technology and RF Power Amplifier Design
2(1)
Device Modeling
3(1)
Power Amplifier IC Design
4(1)
Power Amplifier Linearity
5(1)
Modulation Schemes
5(4)
Circuit Simulation
9(1)
Load-Pull Measurements
10(5)
References
13(2)
Device Modeling For CAD
15(34)
Introduction
15(1)
Bipolar Junction and Heterojunction Bipolar Transistors
16(2)
Bipolar Device Models
18(17)
The Ebers-Moll Model
18(2)
The Gummel-Poon Model
20(5)
The VBIC Model
25(4)
Mextram
29(3)
HICUM
32(3)
MOSFET Device Physics
35(3)
MOSFET Device Models
38(11)
The Level 1 Model
38(2)
The Level 2 and Level 3 Models
40(1)
BSIM
40(3)
The BSIM2 and HSPICE Level 28 Models
43(1)
BSIM3
44(1)
MOS Model 9 and MOS Model 11
45(1)
BSIM4
45(1)
References
46(3)
Empirical Modeling of Bipolar Devices
49(38)
Introduction
49(5)
Modeling the HBT versus the BJT
49(1)
Parameter Extraction
50(1)
Motivation for an Empirical Bipolar Device Model
51(2)
Physics-Based and Empirical Models
53(1)
Compatibility between Large-and Small-Signal Models
53(1)
Model Construction and Parameter Extraction
54(9)
Current Source Model
54(2)
Current Source Model Parameter Extraction
56(2)
Extraction of Intrinsic Capacitances
58(2)
Extraction of Base Resistance
60(1)
Parameter Extraction Procedure
61(2)
Temperature-Dependent InGaP/GaAs HBT Large-Signal Model
63(8)
Empirical Si BJT Large-Signal Model
71(6)
Extension of the Empirical Modeling Method to the SiGe HBT
77(6)
Summary
83(4)
References
83(4)
Scalable Modeling of RF MOSFETS
87(36)
Introduction
87(4)
NQS Effects
88(1)
Distributed Gate Resistance
89(1)
Distributed Substrate Resistance
89(2)
Scalable Modified BSIM3v3 Model
91(29)
Scalability of MOSFET Model
91(3)
Extraction of Small-Signal Model Parameters
94(7)
Scalable Substrate Network Modeling
101(15)
Modified BSIM3v3 Model
116(4)
Summary
120(3)
References
120(3)
Power Amplifier IC Design
123(18)
Introduction
123(1)
Power Amplifier Design Methodology
124(1)
Classes of Operation
125(7)
Performance Metrics
132(4)
Thermal Instability and Ballasting
136(5)
References
138(3)
Power Amplifier Design In Silicon
141(32)
Introduction
141(1)
A 2.4-GHz High-Efficiency SiGe HBT Power Amplifier
142(11)
Circuit Design Considerations
143(3)
Analysis of Ballasting for SiGe HBT Power Amplifiers
146(2)
Harmonic Suppression Filter and Output Match Network
148(2)
Performance of the Power Amplifier Module
150(3)
RF Power Amplifier Design Using Device Periphery Adjustment
153(20)
Analysis of the Device Periphery Adjustment Technique
155(2)
1.9-GHz CMOS Power Amplifier
157(5)
1.9-GHz CDMA/PCS SiGe HBT Power Amplifier
162(4)
Nonlinear Term Cancellation for Linearity Improvement
166(3)
References
169(4)
Efficiency Enhancement of RF Power Amplifiers
173(26)
Introduction
173(1)
Efficiency Enhancement Techniques
174(5)
Envelope Elimination and Restoration
174(1)
Bias Adaptation
175(1)
The Doherty Amplifier Technique
175(1)
Chireix's Outphasing Amplifier Technique
176(3)
The Classical Doherty Amplifier
179(2)
The Multistage Doherty Amplifier
181(18)
Principle of Operation
181(5)
Analysis of Efficiency
186(2)
Practical Considerations
188(2)
Measurement Results
190(8)
References
198(1)
Index 199


Arvind Raghavan is a Senior Design Engineer for the Intel Corporation. Nuttapong Srirattana is a Senior Design Engineer at RF Micro Devices. Joy Laskar holds the Schlumberger Chair in Microelectronics and is the founder and Director of the Georgia Electronic Design Center within the School of Electrical and Computer Engineering at the Georgia Institute of Technology.