Authors for this volume |
|
xiii | |
Preface |
|
xv | |
|
Guidance Report I.1 Quality assurance in model-based water management: Better modelling practices |
|
|
1 | (92) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1 Why Quality Assurance for Model-based Water Management? |
|
|
1 | (8) |
|
1.1 Problems in modelling |
|
|
1 | (1) |
|
1.2 Examples of poor quality of the modelling process |
|
|
2 | (1) |
|
1.2.1 Bloopers in modelling |
|
|
2 | (2) |
|
1.2.2 Lack of documentation of model capabilities and limitations |
|
|
4 | (1) |
|
1.2.3 Miscommunication and lack of public participation |
|
|
4 | (1) |
|
1.3 Context and objectives of this guidance document |
|
|
5 | (4) |
|
|
9 | (8) |
|
|
9 | (1) |
|
2.2 Quality approaches in a historical perspective |
|
|
9 | (2) |
|
2.3 Quality assurance and ISO |
|
|
11 | (1) |
|
2.3.1 The International Organization for Standardization (ISO) |
|
|
11 | (1) |
|
2.3.2 ISO standards history |
|
|
11 | (1) |
|
2.3.3 ISO families of standards |
|
|
12 | (1) |
|
2.3.4 ISO 9000 quality standards in general |
|
|
13 | (1) |
|
2.3.5 Are ISO 9000 quality standards sufficient for modelling? |
|
|
14 | (1) |
|
2.4 On standards and guidelines |
|
|
15 | (1) |
|
2.4.1 Informal standards versus formal standards |
|
|
15 | (1) |
|
2.4.2 ISO and modelling standards |
|
|
15 | (2) |
|
3 State-of-the-art QA for Model-based Water Management |
|
|
17 | (10) |
|
3.1 Quality Assurance defined for modelling |
|
|
17 | (1) |
|
3.2 Guiding principles - three different approaches |
|
|
17 | (2) |
|
3.3 Type of QA guidelines for modelling |
|
|
19 | (1) |
|
|
19 | (1) |
|
3.3.2 Development stage and prevalence of QA guidelines |
|
|
20 | (1) |
|
|
21 | (1) |
|
3.5 Discussion of QA in water resources modelling |
|
|
21 | (1) |
|
3.5.1 Key aspects in QA guidelines |
|
|
21 | (5) |
|
3.5.2 Organisational requirements for QA guidelines to be effective |
|
|
26 | (1) |
|
4 Modelling Knowledge Base and Support Tool |
|
|
27 | (24) |
|
4.1 QA in the HarmoniQuA approach |
|
|
27 | (2) |
|
4.2 Design considerations of modelling KB and MoST |
|
|
29 | (1) |
|
|
30 | (1) |
|
4.3.1 MoST and Quality Assurance (QA) |
|
|
30 | (1) |
|
4.3.2 Structure and guiding principles of the Knowledge Base (KB) |
|
|
31 | (2) |
|
4.3.3 Terminology and glossary |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
4.4.3 Examples of description of tasks |
|
|
36 | (3) |
|
|
39 | (1) |
|
4.5 Modelling Support Tool, MoST |
|
|
40 | (1) |
|
4.5.1 Introduction to MoST |
|
|
40 | (1) |
|
|
40 | (1) |
|
4.5.3 Setting-up modelling projects |
|
|
41 | (1) |
|
4.5.4 Guiding modelling projects |
|
|
42 | (3) |
|
4.5.5 Monitor modelling projects |
|
|
45 | (4) |
|
4.5.6 Reporting modelling projects |
|
|
49 | (1) |
|
4.5.7 Training material and help |
|
|
50 | (1) |
|
|
51 | (2) |
|
|
53 | (40) |
|
Appendix A Functional requirements and design |
|
|
53 | (1) |
|
A.1 Modelling KB and associated tools |
|
|
53 | (5) |
|
A.2 Modelling Support Tool, MoST |
|
|
58 | (3) |
|
Appendix B Details of HarmoniQuA's modelling guidelines |
|
|
61 | (1) |
|
|
61 | (4) |
|
B.2 Steps and tasks of HarmoniQuA's modelling guidelines |
|
|
65 | (7) |
|
B.3 Details of the task `Determine requirements' (Step 1) |
|
|
72 | (8) |
|
B.4 Details of the task `Validation' (Step 4) |
|
|
80 | (3) |
|
B.5 Methods described in HarmoniQuA's modelling guidelines |
|
|
83 | (10) |
|
Guidance Report I.2 Model calibration and validation in model-based water management |
|
|
93 | (98) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (4) |
|
|
99 | (3) |
|
3 Model Parameterisation and Choice of Calibration Parameters |
|
|
102 | (7) |
|
3.1 Principle of parameter parsimony |
|
|
103 | (1) |
|
3.2 Parameterisation methodologies |
|
|
104 | (2) |
|
|
106 | (2) |
|
3.4 Use of prior information |
|
|
108 | (1) |
|
4 Calibration Data and Choice of Calibration Objectives |
|
|
109 | (10) |
|
|
110 | (1) |
|
4.2 Numerical performance measures |
|
|
111 | (4) |
|
|
115 | (1) |
|
4.4 Weighting observations and aggregating performance measures |
|
|
116 | (3) |
|
|
119 | (4) |
|
|
120 | (1) |
|
5.2 Automatic calibration |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
6 Optimisation Algorithms |
|
|
123 | (10) |
|
|
124 | (1) |
|
6.2 Local optimisation procedures |
|
|
124 | (2) |
|
6.3 Global optimisation procedures |
|
|
126 | (3) |
|
|
129 | (3) |
|
6.5 Computational requirements |
|
|
132 | (1) |
|
7 Multi-objective Optimisation |
|
|
133 | (5) |
|
|
134 | (1) |
|
7.2 Optimisation using aggregation |
|
|
135 | (1) |
|
7.3 Optimisation using Pareto dominance |
|
|
136 | (1) |
|
7.4 Single vs. multi-objective optimisation |
|
|
137 | (1) |
|
|
138 | (6) |
|
8.1 Hierarchical test scheme |
|
|
139 | (1) |
|
|
139 | (3) |
|
8.1.2 Differential split-sample test |
|
|
142 | (1) |
|
|
142 | (1) |
|
8.1.4 Proxy-basin, differential split-sample test |
|
|
143 | (1) |
|
8.2 Validation tests based on model residuals |
|
|
143 | (1) |
|
|
144 | (4) |
|
|
144 | (1) |
|
9.2 Parameter non-uniqueness |
|
|
145 | (2) |
|
9.3 Uncertainty propagation |
|
|
147 | (1) |
|
|
148 | (27) |
|
10.1 Lumped, conceptual rainfall-runoff model (MIKE 11/NAM) |
|
|
148 | (1) |
|
|
148 | (2) |
|
|
150 | (1) |
|
10.1.3 Calibration parameters |
|
|
150 | (1) |
|
10.1.4 Calibration methods |
|
|
151 | (1) |
|
|
152 | (2) |
|
10.2 Groundwater model (MODFLOW) |
|
|
154 | (1) |
|
|
154 | (1) |
|
10.2.2 Model parameterisation |
|
|
155 | (2) |
|
10.2.3 Calibration objectives |
|
|
157 | (1) |
|
10.2.4 Calibration parameters |
|
|
157 | (1) |
|
10.2.5 Calibration method |
|
|
158 | (1) |
|
|
159 | (1) |
|
10.3 Distributed, integrated model (MIKE SHE) |
|
|
160 | (1) |
|
|
160 | (1) |
|
10.3.2 Model parameterisation |
|
|
161 | (2) |
|
10.3.3 Calibration objectives |
|
|
163 | (1) |
|
10.3.4 Calibration parameters |
|
|
163 | (1) |
|
10.3.5 Calibration method |
|
|
164 | (1) |
|
|
164 | (1) |
|
10.4 Water quality model (ESWAT) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
10.4.3 Calibration objectives |
|
|
167 | (2) |
|
10.4.4 Calibration parameters |
|
|
169 | (1) |
|
10.4.5 Calibration method |
|
|
170 | (1) |
|
|
171 | (4) |
|
|
175 | (6) |
|
|
181 | (10) |
|
|
181 | (3) |
|
|
184 | (2) |
|
|
186 | (2) |
|
|
188 | (3) |
|
Guidance Report I.3 Review of sensitivity analysis methods |
|
|
191 | (80) |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (5) |
|
|
192 | (1) |
|
|
192 | (1) |
|
1.3 Benefits of sensitivity analysis |
|
|
192 | (1) |
|
1.4 What is sensitivity analysis? |
|
|
193 | (1) |
|
1.5 Sensitivity analysis and the Water Framework Directive |
|
|
194 | (1) |
|
|
195 | (2) |
|
2 Decision Tree for Choosing a Sensitivity Analysis |
|
|
197 | (5) |
|
2.1.1 Sensitivity aim/setting |
|
|
197 | (2) |
|
|
199 | (3) |
|
|
202 | (30) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
204 | (1) |
|
3.2 Experimental design of SA (sampling) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
3.2.3 Latin Hypercube sampling (LHS) |
|
|
206 | (1) |
|
3.2.4 Correlation control |
|
|
206 | (1) |
|
3.2.5 Quasi-random sampling with low-discrepancy sequences |
|
|
206 | (1) |
|
3.3 Methods of sensitivity analysis |
|
|
207 | (1) |
|
3.3.1 Graphical methods and visualisation |
|
|
207 | (8) |
|
|
215 | (2) |
|
|
217 | (2) |
|
|
219 | (10) |
|
3.3.5 Sensitivity and model emulators |
|
|
229 | (3) |
|
|
232 | (8) |
|
4.1 Modelling floodplain hydrological processes |
|
|
232 | (1) |
|
4.2 Flood inundation models |
|
|
233 | (2) |
|
4.3 Water quality modelling |
|
|
235 | (5) |
|
|
240 | (1) |
|
|
241 | (6) |
|
|
247 | (7) |
|
|
254 | (17) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
8.2.1 The finite difference method |
|
|
255 | (1) |
|
8.2.2 Direct method for sensitivity analysis |
|
|
256 | (1) |
|
8.2.3 Green function's method |
|
|
257 | (1) |
|
|
258 | (1) |
|
8.3.1 Variance based methods |
|
|
258 | (5) |
|
8.3.2 Regression analysis |
|
|
263 | (1) |
|
8.3.3 Regionalised sensitivity analysis |
|
|
263 | (1) |
|
|
264 | (1) |
|
8.3.5 Sensitivity and model emulators |
|
|
265 | (6) |
|
Guidance Report I.4 Uncertainty analysis in model-based water management |
|
|
271 | |
|
|
271 | (1) |
|
|
271 | (1) |
|
1 Why is Uncertainty Assessment Important? |
|
|
271 | (11) |
|
1.1 Uncertainty and risk in decision making |
|
|
271 | (3) |
|
1.2 Water Framework Directive - requirements |
|
|
274 | (1) |
|
|
275 | (3) |
|
1.4 Context and objective of this document |
|
|
278 | (4) |
|
2 When is Uncertainty Assessment Required? |
|
|
282 | (4) |
|
2.1 The modelling process |
|
|
282 | (2) |
|
|
284 | (2) |
|
|
286 | (7) |
|
|
286 | (3) |
|
3.2 Taxonomy of imperfect knowledge |
|
|
289 | (2) |
|
3.3 Sources of uncertainty |
|
|
291 | (1) |
|
3.4 Nature of uncertainty |
|
|
291 | (1) |
|
3.5 The uncertainty matrix |
|
|
292 | (1) |
|
4 Methodologies for Uncertainty Assessment |
|
|
293 | (26) |
|
|
294 | (2) |
|
4.2 Error propagation equations |
|
|
296 | (2) |
|
|
298 | (2) |
|
4.4 Extended peer review (review by stakeholders) |
|
|
300 | (1) |
|
4.5 Inverse modelling (parameter estimation) |
|
|
301 | (2) |
|
4.6 Inverse modelling (predictive uncertainty) |
|
|
303 | (1) |
|
|
304 | (2) |
|
4.8 Multiple model simulation |
|
|
306 | (2) |
|
|
308 | (2) |
|
|
310 | (2) |
|
|
312 | (2) |
|
4.12 Sensitivity analysis |
|
|
314 | (1) |
|
4.13 Stakeholder involvement |
|
|
315 | (2) |
|
|
317 | (2) |
|
5 How to Select the Appropriate Methodology for Uncertainty Assessment |
|
|
319 | (2) |
|
|
319 | (1) |
|
5.2 Methodologies according to modelling process and level of ambition |
|
|
319 | (2) |
|
5.3 Methodologies according to source and type of uncertainty |
|
|
321 | (1) |
|
|
321 | (8) |
|
6.1 Case 1: Designing measures - nutrient load/comprehensive modelling |
|
|
321 | (2) |
|
6.2 Case 2: Designing measures - water scarcity/basic modelling |
|
|
323 | (1) |
|
6.3 Case 3: Implementation - Real-time forecasting (of Case 2) |
|
|
323 | (6) |
|
6.4 Case 4: Evaluation - Post project appraisal (of Case 1) |
|
|
329 | (1) |
|
|
329 | |