|
|
|
1 Hydropower: A Historical Perspective |
|
|
3 | (14) |
|
|
3 | (1) |
|
1.2 Waterwheels and Turbines |
|
|
3 | (5) |
|
|
8 | (2) |
|
1.4 Pumped-Storage Hydroelectricity and Grid Control |
|
|
10 | (2) |
|
1.5 Small-Scale and Hydrokinetic Systems |
|
|
12 | (3) |
|
|
15 | (2) |
|
2 The Form and Function of Hydroelectric Plant |
|
|
17 | (10) |
|
|
17 | (1) |
|
2.2 Types of Hydroelectric Plant |
|
|
17 | (4) |
|
2.2.1 Run-of-River Hydroelectric Plant |
|
|
18 | (1) |
|
2.2.2 Reservoir Hydroelectric Plant |
|
|
18 | (3) |
|
2.3 The Purpose of Hydroelectric Plant |
|
|
21 | (5) |
|
|
21 | (2) |
|
2.3.2 Controlling Grid Frequency |
|
|
23 | (3) |
|
|
26 | (1) |
|
3 Overview of Hydropower Control Systems |
|
|
27 | (16) |
|
|
27 | (1) |
|
|
28 | (5) |
|
|
28 | (2) |
|
3.2.2 Mechanical Governors |
|
|
30 | (1) |
|
|
30 | (2) |
|
3.2.4 Control System Development |
|
|
32 | (1) |
|
3.3 The Basic Control Loops |
|
|
33 | (2) |
|
|
33 | (2) |
|
3.3.2 Frequency Control Loop |
|
|
35 | (1) |
|
3.4 Applicable Industrial Standards |
|
|
35 | (4) |
|
|
35 | (1) |
|
3.4.2 IEEE Std. 1010-2006 |
|
|
36 | (1) |
|
3.4.3 IEEE Std. 1020-1988 |
|
|
36 | (1) |
|
3.4.4 IEEE Std. 1147-2005 |
|
|
37 | (1) |
|
3.4.5 IEEE Std. 1207-2004 |
|
|
37 | (1) |
|
3.4.6 IEEE Std. 1248-1998 |
|
|
38 | (1) |
|
3.4.7 IEEE Std. 1249-1996 |
|
|
38 | (1) |
|
|
39 | (4) |
|
Part II Modelling the Power Plant |
|
|
|
|
43 | (34) |
|
|
43 | (1) |
|
|
44 | (6) |
|
|
44 | (1) |
|
|
45 | (5) |
|
4.3 Modelling the Water Column |
|
|
50 | (8) |
|
4.3.1 Single Penstock Modelling |
|
|
51 | (2) |
|
4.3.2 Elastic Water Column Model |
|
|
53 | (2) |
|
4.3.3 Combined Turbine/Penstock |
|
|
55 | (1) |
|
4.3.4 Multiple Penstock Model |
|
|
56 | (2) |
|
|
58 | (5) |
|
4.4.1 Inelastic Water Column |
|
|
58 | (2) |
|
4.4.2 Elastic Water Column |
|
|
60 | (3) |
|
4.5 Pressure Control Systems |
|
|
63 | (3) |
|
|
63 | (1) |
|
4.5.2 Modelling of the Surge Tank |
|
|
64 | (2) |
|
4.6 Evaluation of Hydraulic Parameters for Dinorwig |
|
|
66 | (3) |
|
4.6.1 Water Starting Time |
|
|
66 | (1) |
|
|
67 | (1) |
|
4.6.3 Head Loss Coefficients |
|
|
67 | (2) |
|
4.7 Distributed Parameter Models |
|
|
69 | (5) |
|
4.7.1 The Water Hammer Equations |
|
|
69 | (1) |
|
4.7.2 Numerical Solution Methods |
|
|
70 | (3) |
|
4.7.3 Comparison with the Inelastic Model |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
77 | (16) |
|
|
77 | (1) |
|
|
77 | (7) |
|
5.2.1 Mechanical Model of the Generator |
|
|
78 | (2) |
|
|
80 | (3) |
|
|
83 | (1) |
|
|
84 | (3) |
|
5.3.1 Electrical Coupling Between Generators |
|
|
84 | (3) |
|
|
87 | (3) |
|
5.4.1 Megawatt-Frequency Control (P-F Control) |
|
|
88 | (1) |
|
5.4.2 Megavar-Voltage Control (Q-V Control) |
|
|
89 | (1) |
|
5.5 Load Frequency Control |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
93 | (26) |
|
|
93 | (1) |
|
6.2 The Three Term (PID) Controller |
|
|
93 | (5) |
|
6.2.1 Digital PID Representation |
|
|
95 | (1) |
|
6.2.2 Dinorwig Governor Configuration |
|
|
95 | (3) |
|
6.3 System Identification |
|
|
98 | (10) |
|
6.3.1 Dinorwig Governor Frequency Response Test |
|
|
100 | (3) |
|
6.3.2 Guide Vane Modelling |
|
|
103 | (5) |
|
6.4 Parameters Specification |
|
|
108 | (3) |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
111 | (5) |
|
|
116 | (3) |
|
|
119 | (20) |
|
|
119 | (1) |
|
|
119 | (7) |
|
7.2.1 Single Penstock Plant |
|
|
119 | (6) |
|
7.2.2 Multiple Penstocks Plant |
|
|
125 | (1) |
|
|
126 | (6) |
|
7.3.1 Comparison with Linear Response |
|
|
127 | (1) |
|
7.3.2 Simulation of Hydraulic Coupling Between Units |
|
|
128 | (1) |
|
7.3.3 Comparison with an Independent Model |
|
|
129 | (1) |
|
7.3.4 Comparison with Measured Response |
|
|
130 | (2) |
|
7.4 Models for Simulation |
|
|
132 | (1) |
|
7.5 Evaluation of the SIMULINK® Models |
|
|
133 | (3) |
|
|
136 | (3) |
|
8 Hardware-in-the-Loop Simulation |
|
|
139 | (22) |
|
|
139 | (2) |
|
|
141 | (2) |
|
8.3 HIL Simulator for Dinorwig Power Station |
|
|
143 | (10) |
|
8.3.1 Hardware and Software for the Development System |
|
|
143 | (3) |
|
8.3.2 Preliminary Real-Time Implementation |
|
|
146 | (2) |
|
8.3.3 Connecting the Real Governor to the Plant Model |
|
|
148 | (2) |
|
|
150 | (3) |
|
8.4 Extending the Simulator |
|
|
153 | (5) |
|
|
158 | (3) |
|
Part III Controlling the Power Plant |
|
|
|
|
161 | (20) |
|
|
161 | (1) |
|
9.2 Stability of the Unit in Isolated Operation |
|
|
162 | (8) |
|
9.2.1 System Representation |
|
|
162 | (1) |
|
9.2.2 Routh-Hurwitz Stability Criterion |
|
|
163 | (3) |
|
|
166 | (4) |
|
9.3 Stability of Plant Connected to a Power System |
|
|
170 | (4) |
|
9.3.1 Plant Configuration |
|
|
170 | (2) |
|
|
172 | (2) |
|
9.4 Stability of Plant Operating with a Deadband |
|
|
174 | (2) |
|
9.5 Tuning the Controllers |
|
|
176 | (3) |
|
9.5.1 Proportional and Integral |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (2) |
|
10 Feed-Forward Characteristic |
|
|
181 | (16) |
|
|
181 | (2) |
|
10.2 Linearised Model for the Hydroelectric Plant |
|
|
183 | (2) |
|
10.3 Model for the Power Network |
|
|
185 | (4) |
|
10.4 Predictive Feed-Forward |
|
|
189 | (3) |
|
10.5 Recursive Frequency Prediction |
|
|
192 | (2) |
|
|
194 | (2) |
|
|
196 | (1) |
|
11 Model Predictive Controller |
|
|
197 | (42) |
|
|
197 | (1) |
|
11.2 Model Predictive Control in Electric Power Generation |
|
|
197 | (3) |
|
11.2.1 Model Predictive Control Elements |
|
|
197 | (2) |
|
11.2.2 Brief Review of Some MPC Approaches |
|
|
199 | (1) |
|
11.2.3 Applications of MPC in Power Plants |
|
|
200 | (1) |
|
11.3 Generalised Predictive Control |
|
|
200 | (5) |
|
|
201 | (3) |
|
|
204 | (1) |
|
11.4 Tuning Guidelines: SISO GPC |
|
|
205 | (6) |
|
|
206 | (1) |
|
11.4.2 Controller Parameters |
|
|
206 | (5) |
|
11.5 Tuning Guidelines: MIMO GPC |
|
|
211 | (26) |
|
|
211 | (2) |
|
|
213 | (11) |
|
11.5.3 MIMO Nonlinear Elastic Model |
|
|
224 | (13) |
|
|
237 | (2) |
|
12 Predictive Controller of Mixed Logical Dynamical Systems |
|
|
239 | (22) |
|
|
239 | (1) |
|
|
239 | (5) |
|
|
240 | (1) |
|
12.2.2 Inequalities and Integer Programming |
|
|
240 | (1) |
|
12.2.3 Illustration of a MLD System |
|
|
241 | (3) |
|
12.3 MLD Predictive Model |
|
|
244 | (3) |
|
12.3.1 Description of the MLD Predictive Model |
|
|
244 | (1) |
|
12.3.2 Evaluation of the MLD Predictive Model |
|
|
244 | (3) |
|
12.4 Model Predictive Control Using MLD Prediction Models |
|
|
247 | (4) |
|
12.4.1 Predictive Controllers and MLD Systems |
|
|
247 | (1) |
|
12.4.2 Applying a MLD-GPC to the Hydroelectric Station |
|
|
248 | (3) |
|
12.5 Modelling High-Level Control Rules with MLD |
|
|
251 | (4) |
|
12.5.1 Hierarchical Control |
|
|
251 | (4) |
|
12.5.2 Lifetime Consumption |
|
|
255 | (1) |
|
12.6 MPC Real-Time Applications |
|
|
255 | (3) |
|
|
258 | (3) |
|
13 Outlook and Conclusions |
|
|
261 | (8) |
|
|
261 | (2) |
|
13.2 Future Role of Pumped Storage |
|
|
263 | (3) |
|
|
266 | (3) |
|
A Dinorwig Simulation Models |
|
|
269 | (14) |
|
|
269 | (9) |
|
|
273 | (4) |
|
A.1.2 Nonlinear Nonelastic Model |
|
|
277 | (1) |
|
A.1.3 Nonlinear Elastic Model |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
279 | (4) |
|
A.3.1 Dinorwig Electrical Subsystem |
|
|
279 | (1) |
|
|
280 | (3) |
|
|
283 | (4) |
|
B.1 Classical Controllers |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (3) |
|
|
284 | (1) |
|
|
285 | (2) |
References |
|
287 | (10) |
Index |
|
297 | |