Muutke küpsiste eelistusi

Modelling and Controlling Hydropower Plants 2012 [Kõva köide]

  • Formaat: Hardback, 302 pages, kõrgus x laius: 235x155 mm, kaal: 647 g, XVIII, 302 p., 1 Hardback
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 14-Jun-2012
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447122909
  • ISBN-13: 9781447122906
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 302 pages, kõrgus x laius: 235x155 mm, kaal: 647 g, XVIII, 302 p., 1 Hardback
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 14-Jun-2012
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447122909
  • ISBN-13: 9781447122906
Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance. The electrical power generated is normally controlled by individual feedback loops on each unit. The reference input to the power loop is the grid frequency deviation from its set point, thus structuring an external frequency control loop.The book discusses practical and well-documented cases of modelling and controlling hydropower stations, focused on a pumped storage scheme based in Dinorwig, North Wales. These accounts are valuable to specialist control engineers who are working in this industry. In addition, the theoretical treatment of modern and classic controllers will be useful for graduate and final year undergraduate engineering students.This book reviews SISO and MIMO models, which cover the linear and nonlinear characteristics of pumped storage hydroelectric power stations. The most important dynamic features are discussed. The verification of these models by hardware in the loop simulation is described. To show how the performance of a pumped storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of Dinorwig power plant, that include PID, Fuzzy approximation, Feed-Forward and Model Based Predictive Control with linear and hybrid prediction models.

Part I Hydropower Plants
1 Hydropower: A Historical Perspective
3(14)
1.1 Introduction
3(1)
1.2 Waterwheels and Turbines
3(5)
1.3 Hydroelectricity
8(2)
1.4 Pumped-Storage Hydroelectricity and Grid Control
10(2)
1.5 Small-Scale and Hydrokinetic Systems
12(3)
1.6 Conclusions
15(2)
2 The Form and Function of Hydroelectric Plant
17(10)
2.1 Introduction
17(1)
2.2 Types of Hydroelectric Plant
17(4)
2.2.1 Run-of-River Hydroelectric Plant
18(1)
2.2.2 Reservoir Hydroelectric Plant
18(3)
2.3 The Purpose of Hydroelectric Plant
21(5)
2.3.1 Grid Requirements
21(2)
2.3.2 Controlling Grid Frequency
23(3)
2.4 Conclusions
26(1)
3 Overview of Hydropower Control Systems
27(16)
3.1 Introduction
27(1)
3.2 Historical Review
28(5)
3.2.1 Early Development
28(2)
3.2.2 Mechanical Governors
30(1)
3.2.3 Modern Governors
30(2)
3.2.4 Control System Development
32(1)
3.3 The Basic Control Loops
33(2)
3.3.1 Power Control Loop
33(2)
3.3.2 Frequency Control Loop
35(1)
3.4 Applicable Industrial Standards
35(4)
3.4.1 IEEE Std. 125-2007
35(1)
3.4.2 IEEE Std. 1010-2006
36(1)
3.4.3 IEEE Std. 1020-1988
36(1)
3.4.4 IEEE Std. 1147-2005
37(1)
3.4.5 IEEE Std. 1207-2004
37(1)
3.4.6 IEEE Std. 1248-1998
38(1)
3.4.7 IEEE Std. 1249-1996
38(1)
3.5 Conclusions
39(4)
Part II Modelling the Power Plant
4 Hydraulic Models
43(34)
4.1 Introduction
43(1)
4.2 Turbine Model
44(6)
4.2.1 Impulse Turbine
44(1)
4.2.2 Reaction Turbines
45(5)
4.3 Modelling the Water Column
50(8)
4.3.1 Single Penstock Modelling
51(2)
4.3.2 Elastic Water Column Model
53(2)
4.3.3 Combined Turbine/Penstock
55(1)
4.3.4 Multiple Penstock Model
56(2)
4.4 Linearised Models
58(5)
4.4.1 Inelastic Water Column
58(2)
4.4.2 Elastic Water Column
60(3)
4.5 Pressure Control Systems
63(3)
4.5.1 Surge Tanks
63(1)
4.5.2 Modelling of the Surge Tank
64(2)
4.6 Evaluation of Hydraulic Parameters for Dinorwig
66(3)
4.6.1 Water Starting Time
66(1)
4.6.2 Wave Travel Time
67(1)
4.6.3 Head Loss Coefficients
67(2)
4.7 Distributed Parameter Models
69(5)
4.7.1 The Water Hammer Equations
69(1)
4.7.2 Numerical Solution Methods
70(3)
4.7.3 Comparison with the Inelastic Model
73(1)
4.8 Conclusions
74(3)
5 Power System Dynamics
77(16)
5.1 Introduction
77(1)
5.2 Isolated Operation
77(7)
5.2.1 Mechanical Model of the Generator
78(2)
5.2.2 Load Modelling
80(3)
5.2.3 Generator Loading
83(1)
5.3 Parallel Operation
84(3)
5.3.1 Electrical Coupling Between Generators
84(3)
5.4 Power System Model
87(3)
5.4.1 Megawatt-Frequency Control (P-F Control)
88(1)
5.4.2 Megavar-Voltage Control (Q-V Control)
89(1)
5.5 Load Frequency Control
90(2)
5.6 Conclusions
92(1)
6 Speed Governor
93(26)
6.1 Introduction
93(1)
6.2 The Three Term (PID) Controller
93(5)
6.2.1 Digital PID Representation
95(1)
6.2.2 Dinorwig Governor Configuration
95(3)
6.3 System Identification
98(10)
6.3.1 Dinorwig Governor Frequency Response Test
100(3)
6.3.2 Guide Vane Modelling
103(5)
6.4 Parameters Specification
108(3)
6.4.1 Step Response
108(2)
6.4.2 Ramp Response
110(1)
6.5 Closed Loop Analysis
111(5)
6.6 Conclusions
116(3)
7 Models Verification
119(20)
7.1 Introduction
119(1)
7.2 Model Integration
119(7)
7.2.1 Single Penstock Plant
119(6)
7.2.2 Multiple Penstocks Plant
125(1)
7.3 Model Verification
126(6)
7.3.1 Comparison with Linear Response
127(1)
7.3.2 Simulation of Hydraulic Coupling Between Units
128(1)
7.3.3 Comparison with an Independent Model
129(1)
7.3.4 Comparison with Measured Response
130(2)
7.4 Models for Simulation
132(1)
7.5 Evaluation of the SIMULINK® Models
133(3)
7.6 Conclusions
136(3)
8 Hardware-in-the-Loop Simulation
139(22)
8.1 Introduction
139(2)
8.2 Real-Time Systems
141(2)
8.3 HIL Simulator for Dinorwig Power Station
143(10)
8.3.1 Hardware and Software for the Development System
143(3)
8.3.2 Preliminary Real-Time Implementation
146(2)
8.3.3 Connecting the Real Governor to the Plant Model
148(2)
8.3.4 Test Results
150(3)
8.4 Extending the Simulator
153(5)
8.5 Conclusions
158(3)
Part III Controlling the Power Plant
9 Classical Approach
161(20)
9.1 Introduction
161(1)
9.2 Stability of the Unit in Isolated Operation
162(8)
9.2.1 System Representation
162(1)
9.2.2 Routh-Hurwitz Stability Criterion
163(3)
9.2.3 Root Locus Method
166(4)
9.3 Stability of Plant Connected to a Power System
170(4)
9.3.1 Plant Configuration
170(2)
9.3.2 Stability Margins
172(2)
9.4 Stability of Plant Operating with a Deadband
174(2)
9.5 Tuning the Controllers
176(3)
9.5.1 Proportional and Integral
176(2)
9.5.2 PI Anti-windup
178(1)
9.6 Conclusions
179(2)
10 Feed-Forward Characteristic
181(16)
10.1 Introduction
181(2)
10.2 Linearised Model for the Hydroelectric Plant
183(2)
10.3 Model for the Power Network
185(4)
10.4 Predictive Feed-Forward
189(3)
10.5 Recursive Frequency Prediction
192(2)
10.6 Results
194(2)
10.7 Conclusions
196(1)
11 Model Predictive Controller
197(42)
11.1 Introduction
197(1)
11.2 Model Predictive Control in Electric Power Generation
197(3)
11.2.1 Model Predictive Control Elements
197(2)
11.2.2 Brief Review of Some MPC Approaches
199(1)
11.2.3 Applications of MPC in Power Plants
200(1)
11.3 Generalised Predictive Control
200(5)
11.3.1 Unconstrained GPC
201(3)
11.3.2 Constrained GPC
204(1)
11.4 Tuning Guidelines: SISO GPC
205(6)
11.4.1 Prediction Model
206(1)
11.4.2 Controller Parameters
206(5)
11.5 Tuning Guidelines: MIMO GPC
211(26)
11.5.1 MIMO GPC
211(2)
11.5.2 MIMO Linear Model
213(11)
11.5.3 MIMO Nonlinear Elastic Model
224(13)
11.6 Conclusions
237(2)
12 Predictive Controller of Mixed Logical Dynamical Systems
239(22)
12.1 Introduction
239(1)
12.2 MLD Theory
239(5)
12.2.1 Hybrid Systems
240(1)
12.2.2 Inequalities and Integer Programming
240(1)
12.2.3 Illustration of a MLD System
241(3)
12.3 MLD Predictive Model
244(3)
12.3.1 Description of the MLD Predictive Model
244(1)
12.3.2 Evaluation of the MLD Predictive Model
244(3)
12.4 Model Predictive Control Using MLD Prediction Models
247(4)
12.4.1 Predictive Controllers and MLD Systems
247(1)
12.4.2 Applying a MLD-GPC to the Hydroelectric Station
248(3)
12.5 Modelling High-Level Control Rules with MLD
251(4)
12.5.1 Hierarchical Control
251(4)
12.5.2 Lifetime Consumption
255(1)
12.6 MPC Real-Time Applications
255(3)
12.7 Conclusions
258(3)
13 Outlook and Conclusions
261(8)
13.1 Outlook
261(2)
13.2 Future Role of Pumped Storage
263(3)
13.3 Conclusions
266(3)
A Dinorwig Simulation Models
269(14)
A.1 Hydraulic Subsystem
269(9)
A.1.1 Linearised Model
273(4)
A.1.2 Nonlinear Nonelastic Model
277(1)
A.1.3 Nonlinear Elastic Model
278(1)
A.2 Guide Vanes
278(1)
A.3 Electrical Subsystem
279(4)
A.3.1 Dinorwig Electrical Subsystem
279(1)
A.3.2 Load Model
280(3)
B Tuning Guidelines
283(4)
B.1 Classical Controllers
283(1)
B.1.1 PI
283(1)
B.1.2 PI Anti-windup
284(1)
B.2 MPC
284(3)
B.2.1 SISO GPC
284(1)
B.2.2 MIMO GPC
285(2)
References 287(10)
Index 297