|
|
xx | |
|
|
xxiii | |
Acronyms and abbreviations |
|
xxvi | |
|
1 Concepts, models, and definitions |
|
|
1 | (15) |
|
1.1 Defining nonlinearity |
|
|
1 | (1) |
|
1.2 Where does nonlinearity come from? |
|
|
2 | (1) |
|
1.3 Stationarity and nonstationarity |
|
|
3 | (3) |
|
|
6 | (1) |
|
|
7 | (3) |
|
|
10 | (1) |
|
1.7 Conditional distributions |
|
|
10 | (1) |
|
1.8 Wold's representation and Volterra expansion |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (2) |
|
2 Nonlinear models in economic theory |
|
|
16 | (12) |
|
2.1 Disequilibrium models |
|
|
16 | (2) |
|
|
18 | (4) |
|
|
18 | (2) |
|
|
20 | (2) |
|
2.3 Exchange rates in a target zone |
|
|
22 | (3) |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (3) |
|
3 Parametric nonlinear models |
|
|
28 | (24) |
|
3.1 General considerations |
|
|
28 | (4) |
|
3.2 Switching regression models |
|
|
32 | (3) |
|
3.2.1 Standard switching regression model |
|
|
32 | (2) |
|
3.2.2 Vector threshold autoregressive model |
|
|
34 | (1) |
|
3.3 Markov-switching regression models |
|
|
35 | (2) |
|
3.4 Smooth transition regression models |
|
|
37 | (4) |
|
3.4.1 Standard smooth transition regression model |
|
|
37 | (3) |
|
3.4.2 Additive, multiple, and time-varying STR models |
|
|
40 | (1) |
|
3.4.3 Vector smooth transition autoregressive model |
|
|
41 | (1) |
|
|
41 | (2) |
|
3.6 Artificial neural network models |
|
|
43 | (2) |
|
|
45 | (1) |
|
3.8 Nonlinear moving average models |
|
|
46 | (1) |
|
|
47 | (1) |
|
3.10 Time-varying parameters and state space models |
|
|
48 | (2) |
|
3.11 Random coefficient and volatility models |
|
|
50 | (2) |
|
4 The nonparametric approach |
|
|
52 | (13) |
|
|
52 | (1) |
|
4.2 Autocovariance and spectrum |
|
|
53 | (2) |
|
4.3 Density, conditional mean, and conditional variance |
|
|
55 | (2) |
|
4.3.1 Non-Gaussian marginals |
|
|
55 | (1) |
|
4.3.2 Conditional quantities |
|
|
56 | (1) |
|
4.4 Dependence measures for nonlinear processes |
|
|
57 | (8) |
|
4.4.1 Local measures of dependence |
|
|
58 | (2) |
|
4.4.2 Global measures of dependence |
|
|
60 | (1) |
|
4.4.3 Measures based on density and distribution functions |
|
|
61 | (1) |
|
|
62 | (3) |
|
5 Testing linearity against parametric alternatives |
|
|
65 | (27) |
|
|
65 | (1) |
|
5.2 Consistent misspecification tests |
|
|
66 | (2) |
|
5.3 Lagrange multiplier or score test |
|
|
68 | (4) |
|
|
68 | (2) |
|
5.3.2 Test in stages and a heteroskedasticity-robust version |
|
|
70 | (1) |
|
5.3.3 Robustifying against conditional heteroskedasticity |
|
|
71 | (1) |
|
5.4 Locally equivalent alternatives |
|
|
72 | (1) |
|
5.5 Nonlinear model only identified under the alternative |
|
|
73 | (10) |
|
5.5.1 Identification problem |
|
|
73 | (1) |
|
|
74 | (3) |
|
5.5.3 Lagrange multiplier-type tests |
|
|
77 | (3) |
|
|
80 | (2) |
|
5.5.5 Giving values to the nuisance parameters |
|
|
82 | (1) |
|
5.6 Testing linearity against unspecified alternatives |
|
|
83 | (2) |
|
5.6.1 Regression Specification Error Test |
|
|
83 | (1) |
|
5.6.2 Tests based on expansions |
|
|
84 | (1) |
|
5.7 Comparing parametric linearity tests using asymptotic relative efficiency |
|
|
85 | (5) |
|
|
85 | (3) |
|
|
88 | (2) |
|
|
90 | (2) |
|
6 Testing parameter constancy |
|
|
92 | (21) |
|
6.1 General considerations |
|
|
92 | (1) |
|
6.2 Generalizing the Chow test |
|
|
93 | (4) |
|
6.2.1 Testing against a single break |
|
|
93 | (2) |
|
6.2.2 Testing against multiple breaks |
|
|
95 | (2) |
|
6.3 Lagrange multiplier type tests |
|
|
97 | (8) |
|
6.3.1 Testing a stationary single-equation model |
|
|
97 | (3) |
|
6.3.2 Testing a stationary vector autoregressive model |
|
|
100 | (2) |
|
6.3.3 Testing a nonstationary vector autoregressive model |
|
|
102 | (3) |
|
6.4 Tests based on recursive estimation of parameters |
|
|
105 | (8) |
|
6.4.1 Cumulative sum tests |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
6.4.4 Tests against stochastic parameters |
|
|
109 | (2) |
|
6.4.5 Testing the constancy of cointegrating relationships |
|
|
111 | (2) |
|
7 Nonparametric specification tests |
|
|
113 | (49) |
|
|
113 | (1) |
|
7.2 Nonparametric linearity tests |
|
|
114 | (9) |
|
7.2.1 Nonparametric tests: the spectral domain |
|
|
115 | (1) |
|
7.2.2 Testing linearity in the conditional mean and conditional variance |
|
|
116 | (3) |
|
|
119 | (1) |
|
|
120 | (1) |
|
7.2.5 Finite-sample properties and use of the asymptotics |
|
|
121 | (1) |
|
7.2.6 A bootstrap approach to testing |
|
|
122 | (1) |
|
7.3 Testing for specific functional forms |
|
|
123 | (6) |
|
7.3.1 Tests based on residuals |
|
|
124 | (3) |
|
7.3.2 Conditional mean and conditional variance testing |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
129 | (4) |
|
7.5 Testing for additivity and interaction |
|
|
133 | (5) |
|
7.5.1 Testing in additive models |
|
|
133 | (3) |
|
7.5.2 A simulated example |
|
|
136 | (2) |
|
7.6 Tests for partial linearity and semiparametric modelling |
|
|
138 | (2) |
|
7.7 Tests of independence |
|
|
140 | (22) |
|
|
140 | (1) |
|
|
141 | (2) |
|
7.7.3 Frequency based tests |
|
|
143 | (1) |
|
|
143 | (2) |
|
7.7.5 Distribution based tests of independence |
|
|
145 | (5) |
|
7.7.6 Generalized spectrum and tests of independence |
|
|
150 | (3) |
|
7.7.7 Density based tests of independence |
|
|
153 | (5) |
|
7.7.8 Some examples of independence testing |
|
|
158 | (4) |
|
8 Models of conditional heteroskedasticity |
|
|
162 | (57) |
|
8.1 Autoregressive conditional heteroskedasticity |
|
|
163 | (1) |
|
|
163 | (1) |
|
8.2 The Generalized ARCH model |
|
|
164 | (24) |
|
8.2.1 Why Generalized ARCH? |
|
|
164 | (1) |
|
8.2.2 Families of univariate GARCH models |
|
|
164 | (3) |
|
|
167 | (2) |
|
|
169 | (1) |
|
8.2.5 Moment structure of first-order GARCH models |
|
|
170 | (2) |
|
8.2.6 Moment structure of higher-order GARCH models |
|
|
172 | (1) |
|
8.2.7 Integrated and fractionally Integrated GARCH |
|
|
172 | (3) |
|
8.2.8 Stylized facts and the GARCH model |
|
|
175 | (3) |
|
8.2.9 Building univariate GARCH models |
|
|
178 | (10) |
|
8.3 Family of Exponential GARCH models |
|
|
188 | (8) |
|
8.3.1 Moment structure of EGARCH model |
|
|
189 | (1) |
|
8.3.2 Stylized facts and the EGARCH model |
|
|
190 | (1) |
|
8.3.3 Building EGARCH models |
|
|
191 | (5) |
|
8.4 The Autoregressive Stochastic Volatility model |
|
|
196 | (3) |
|
|
196 | (1) |
|
8.4.2 Moment structure of ARSV models |
|
|
197 | (1) |
|
8.4.3 Stylized facts and the stochastic volatility model |
|
|
198 | (1) |
|
8.4.4 Estimation of ARSV models |
|
|
198 | (1) |
|
8.4.5 Comparing the ARSV model with GARCH |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (2) |
|
8.7 Multivariate GARCH models |
|
|
202 | (17) |
|
8.7.1 General multivariate GARCH model |
|
|
202 | (1) |
|
8.7.2 Link to random coefficient models |
|
|
203 | (1) |
|
8.7.3 Constant Conditional Correlation GARCH |
|
|
204 | (2) |
|
8.7.4 Testing the constant correlation assumption and the Dynamic Conditional Correlation model |
|
|
206 | (3) |
|
8.7.5 Other extensions to the CCC-GARCH model |
|
|
209 | (2) |
|
8.7.6 The BEKK-GARCH model |
|
|
211 | (2) |
|
8.7.7 Factor GARCH models |
|
|
213 | (6) |
|
9 Time-varying parameters and state space models |
|
|
219 | (33) |
|
|
219 | (2) |
|
9.2 Linear state space models |
|
|
221 | (2) |
|
9.3 Time-varying parameter models |
|
|
223 | (1) |
|
9.4 Nonlinear state space models |
|
|
224 | (11) |
|
9.4.1 Extended Kalman filter |
|
|
225 | (1) |
|
9.4.2 Kitagawa's grid approximation |
|
|
226 | (2) |
|
9.4.3 Monte Carlo methods |
|
|
228 | (1) |
|
|
229 | (2) |
|
9.4.5 Approximating with a Gaussian density |
|
|
231 | (4) |
|
9.5 Hidden Markov chains and regimes |
|
|
235 | (7) |
|
9.5.1 Hidden Markov chains |
|
|
235 | (3) |
|
|
238 | (4) |
|
9.6 Estimating parameters |
|
|
242 | (10) |
|
|
242 | (3) |
|
|
245 | (1) |
|
9.6.3 Estimation in linear models |
|
|
245 | (2) |
|
|
247 | (3) |
|
9.6.5 Estimation in hidden Markov and mixture models |
|
|
250 | (2) |
|
|
252 | (27) |
|
|
252 | (17) |
|
10.1.1 Estimation in purely additive models |
|
|
255 | (1) |
|
10.1.2 Marginal integration |
|
|
255 | (2) |
|
10.1.3 Backfitting and smoothed backfitting |
|
|
257 | (3) |
|
10.1.4 Additive models with interactions |
|
|
260 | (2) |
|
10.1.5 A simulated example |
|
|
262 | (1) |
|
10.1.6 Nonparametric and additive estimation of the conditional variance function |
|
|
263 | (6) |
|
|
269 | (3) |
|
10.2.1 Functional coefficient autoregressive models |
|
|
269 | (1) |
|
10.2.2 Transformation of dependent variables and the ACE algorithm |
|
|
269 | (1) |
|
10.2.3 Regression trees, splines, and MARS |
|
|
270 | (1) |
|
10.2.4 Quantile regression |
|
|
270 | (2) |
|
10.3 Semiparametric models |
|
|
272 | (5) |
|
|
273 | (1) |
|
10.3.2 Projection pursuit regression |
|
|
274 | (2) |
|
10.3.3 Partially linear models |
|
|
276 | (1) |
|
10.4 Robust and adaptive estimation |
|
|
277 | (2) |
|
11 Nonlinear and nonstationary models |
|
|
279 | (28) |
|
|
279 | (6) |
|
11.2 Linear unit root models |
|
|
285 | (3) |
|
11.3 Vector autoregressive processes and linear cointegration |
|
|
288 | (2) |
|
11.4 Nonlinear I(1) processes |
|
|
290 | (3) |
|
11.5 Nonlinear error correction models |
|
|
293 | (9) |
|
11.6 Parametric nonlinear regression |
|
|
297 | (5) |
|
11.7 Nonparametric estimation in a nonlinear cointegration type framework |
|
|
302 | (2) |
|
11.8 Stochastic unit root models |
|
|
304 | (3) |
|
12 Algorithms for estimating parametric nonlinear models |
|
|
307 | (22) |
|
12.1 Optimization without derivatives |
|
|
308 | (9) |
|
12.1.1 Grid and line searches |
|
|
308 | (1) |
|
12.1.2 Conjugate directions |
|
|
309 | (2) |
|
12.1.3 Simulated annealing |
|
|
311 | (3) |
|
12.1.4 Evolutionary algorithms |
|
|
314 | (3) |
|
12.2 Methods requiring derivatives |
|
|
317 | (7) |
|
|
317 | (5) |
|
12.2.2 Variable metric methods |
|
|
322 | (2) |
|
|
324 | (5) |
|
|
324 | (2) |
|
12.3.2 Sequential estimation for neural networks |
|
|
326 | (3) |
|
13 Basic nonparametric estimates |
|
|
329 | (15) |
|
|
329 | (5) |
|
|
329 | (2) |
|
13.1.2 Bias and variance reduction |
|
|
331 | (2) |
|
13.1.3 Choice of bandwidth |
|
|
333 | (1) |
|
13.1.4 Variable bandwidth and nearest neighbour estimation |
|
|
333 | (1) |
|
13.1.5 Multivariate density estimation |
|
|
334 | (1) |
|
13.2 Nonparametric regression estimation |
|
|
334 | (10) |
|
13.2.1 Kernel regression estimation |
|
|
335 | (2) |
|
13.2.2 Local polynomial estimation |
|
|
337 | (1) |
|
13.2.3 Bias, convolution, and higher-order kernels |
|
|
338 | (1) |
|
13.2.4 Nearest neighbour estimation |
|
|
339 | (2) |
|
|
341 | (1) |
|
|
341 | (1) |
|
13.2.7 Choice of bandwidth for nonparametric regression |
|
|
342 | (2) |
|
14 Forecasting from nonlinear models |
|
|
344 | (20) |
|
|
344 | (1) |
|
14.2 Conditional mean forecasts from parametric models |
|
|
345 | (6) |
|
14.2.1 Analytical point forecasts |
|
|
345 | (2) |
|
14.2.2 Numerical techniques in forecasting |
|
|
347 | (4) |
|
14.3 Forecasting with nonparametric models |
|
|
351 | (3) |
|
|
354 | (2) |
|
14.5 The usefulness of forecasts from nonlinear models |
|
|
356 | (5) |
|
14.6 Forecasting volatility |
|
|
361 | (1) |
|
14.7 Overview of forecasting from nonlinear models |
|
|
362 | (2) |
|
15 Nonlinear impulse responses |
|
|
364 | (6) |
|
15.1 Generalized impulse response function |
|
|
364 | (3) |
|
15.2 Graphical representation |
|
|
367 | (3) |
|
16 Building nonlinear models |
|
|
370 | (82) |
|
16.1 General considerations |
|
|
370 | (1) |
|
16.2 Nonparametric and semiparametric models |
|
|
371 | (4) |
|
16.3 Building smooth transition regression models |
|
|
375 | (43) |
|
16.3.1 The three stages of the modelling procedure |
|
|
375 | (1) |
|
|
376 | (4) |
|
16.3.3 Estimation of parameters |
|
|
380 | (1) |
|
|
381 | (8) |
|
16.3.5 Graphical tools for characterizing the dynamic behaviour of the STAR model |
|
|
389 | (1) |
|
|
390 | (28) |
|
16.4 Building switching regression models |
|
|
418 | (16) |
|
|
419 | (3) |
|
16.4.2 Estimation and evaluation |
|
|
422 | (1) |
|
|
423 | (11) |
|
16.5 Building artificial neural network models |
|
|
434 | (11) |
|
|
435 | (2) |
|
|
437 | (1) |
|
|
438 | (1) |
|
16.5.4 Alternative modelling approaches |
|
|
439 | (1) |
|
|
439 | (6) |
|
16.6 Two forecast comparisons |
|
|
445 | (7) |
|
16.6.1 Forecasting Wolf's annual sunspot numbers |
|
|
445 | (3) |
|
16.6.2 Forecasting the monthly US unemployment rate |
|
|
448 | (4) |
|
|
452 | (18) |
|
|
452 | (6) |
|
|
458 | (7) |
|
17.2.1 Time-varying seasonality |
|
|
458 | (5) |
|
17.2.2 Temporal aggregation and time-varying seasonality |
|
|
463 | (1) |
|
17.2.3 Nonlinear filters in seasonal adjustment |
|
|
464 | (1) |
|
17.3 Outliers and nonlinearity |
|
|
465 | (5) |
|
17.3.1 What is an outlier? |
|
|
465 | (1) |
|
17.3.2 Model-based definitions |
|
|
466 | (4) |
Bibliography |
|
470 | (67) |
Author Index |
|
537 | (12) |
General Index |
|
549 | |