|
|
|
|
3 | (30) |
|
1.1 Structure and Meaning |
|
|
3 | (6) |
|
1.1.1 Syntax, Types and Pragmatics |
|
|
4 | (1) |
|
|
4 | (2) |
|
1.1.3 Mathematical Models of Computation |
|
|
6 | (3) |
|
1.2 A Taste of Semantic Methods: Numerical Expressions |
|
|
9 | (8) |
|
1.3 Applications of Semantics |
|
|
17 | (3) |
|
1.4 Key Topics and Techniques |
|
|
20 | (6) |
|
1.4.1 Induction and Recursion |
|
|
20 | (2) |
|
|
22 | (2) |
|
|
24 | (1) |
|
1.4.4 Temporal and Modal Logics |
|
|
25 | (1) |
|
1.4.5 Probabilistic Systems |
|
|
25 | (1) |
|
1.5 Chapter Contents and Reading Guide |
|
|
26 | (2) |
|
|
28 | (5) |
|
|
30 | (3) |
|
|
33 | (20) |
|
|
33 | (4) |
|
|
33 | (1) |
|
2.1.2 Signatures and Terms |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.1.4 Unification Problem |
|
|
35 | (2) |
|
2.2 Inference Rules and Logical Systems |
|
|
37 | (8) |
|
|
45 | (8) |
|
|
47 | (6) |
|
Part II IMP: a Simple Imperative Language |
|
|
|
3 Operational Semantics of IMP |
|
|
53 | (24) |
|
|
53 | (3) |
|
3.1.1 Arithmetic Expressions |
|
|
54 | (1) |
|
3.1.2 Boolean Expressions |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
3.2 Operational Semantics of IMP |
|
|
56 | (10) |
|
|
56 | (1) |
|
|
57 | (4) |
|
|
61 | (5) |
|
3.3 Abstract Semantics: Equivalence of Expressions and Commands |
|
|
66 | (11) |
|
3.3.1 Examples: Simple Equivalence Proofs |
|
|
67 | (1) |
|
3.3.2 Examples: Parametric Equivalence Proofs |
|
|
68 | (2) |
|
3.3.3 Examples: Inequality Proofs |
|
|
70 | (2) |
|
3.3.4 Examples: Diverging Computations |
|
|
72 | (3) |
|
|
75 | (2) |
|
4 Induction and Recursion |
|
|
77 | (26) |
|
4.1 Noether's Principle of Well-Founded Induction |
|
|
77 | (16) |
|
4.1.1 Well-Founded Relations |
|
|
77 | (6) |
|
4.1.2 Noetherian Induction |
|
|
83 | (1) |
|
4.1.3 Weak Mathematical Induction |
|
|
84 | (1) |
|
4.1.4 Strong Mathematical Induction |
|
|
85 | (1) |
|
4.1.5 Structural Induction |
|
|
85 | (3) |
|
4.1.6 Induction on Derivations |
|
|
88 | (1) |
|
|
89 | (4) |
|
4.2 Well-Founded Recursion |
|
|
93 | (10) |
|
|
98 | (5) |
|
5 Partial Orders and Fixpoints |
|
|
103 | (24) |
|
5.1 Orders and Continuous Functions |
|
|
103 | (11) |
|
|
104 | (2) |
|
|
106 | (4) |
|
|
110 | (1) |
|
5.1.4 Complete Partial Orders |
|
|
111 | (3) |
|
5.2 Continuity and Fixpoints |
|
|
114 | (5) |
|
5.2.1 Monotone and Continuous Functions |
|
|
114 | (2) |
|
|
116 | (3) |
|
5.3 Immediate Consequence Operator |
|
|
119 | (8) |
|
|
120 | (1) |
|
|
121 | (3) |
|
|
124 | (3) |
|
6 Denotational Semantics of IMP |
|
|
127 | (30) |
|
|
127 | (7) |
|
6.1.1 λ-Notation: Main Ideas |
|
|
128 | (3) |
|
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution |
|
|
131 | (3) |
|
6.2 Denotational Semantics of IMP |
|
|
134 | (7) |
|
6.2.1 Denotational Semantics of Arithmetic Expressions: The Function A |
|
|
134 | (1) |
|
6.2.2 Denotational Semantics of Boolean Expressions: The Function B |
|
|
135 | (1) |
|
6.2.3 Denotational Semantics of Commands: The Function C |
|
|
136 | (5) |
|
6.3 Equivalence Between Operational and Denotational Semantics |
|
|
141 | (8) |
|
6.3.1 Equivalence Proofs for Expressions |
|
|
141 | (1) |
|
6.3.2 Equivalence Proof for Commands |
|
|
142 | (7) |
|
6.4 Computational Induction |
|
|
149 | (8) |
|
|
152 | (5) |
|
Part III HOFL: a Higher-Order Functional Language |
|
|
|
7 Operational Semantics of HOFL |
|
|
157 | (18) |
|
|
157 | (7) |
|
|
158 | (2) |
|
7.1.2 Typability and Typechecking |
|
|
160 | (4) |
|
7.2 Operational Semantics of HOFL |
|
|
164 | (11) |
|
|
171 | (4) |
|
|
175 | (16) |
|
8.1 The Flat Domain of Integer Numbers ZT |
|
|
175 | (1) |
|
8.2 Cartesian Product of Two Domains |
|
|
176 | (2) |
|
|
178 | (3) |
|
|
181 | (2) |
|
|
183 | (3) |
|
|
186 | (5) |
|
|
189 | (2) |
|
9 Denotational Semantics of HOFL |
|
|
191 | (14) |
|
9.1 HOFL Semantic Domains |
|
|
191 | (1) |
|
9.2 HOFL Interpretation Function |
|
|
192 | (6) |
|
|
192 | (1) |
|
|
193 | (1) |
|
9.2.3 Arithmetic Operators |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
9.2.8 Function Application |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
9.3 Continuity of Meta-language's Functions |
|
|
198 | (2) |
|
9.4 Substitution Lemma and Other Properties |
|
|
200 | (5) |
|
|
201 | (4) |
|
10 Equivalence Between HOFL Denotational and Operational Semantics |
|
|
205 | (16) |
|
10.1 HOFL: Operational Semantics vs Denotational Semantics |
|
|
205 | (1) |
|
|
206 | (3) |
|
10.3 Agreement on Convergence |
|
|
209 | (3) |
|
10.4 Operational and Denotational Equivalences of Terms |
|
|
212 | (1) |
|
10.5 A Simpler Denotational Semantics |
|
|
213 | (8) |
|
|
214 | (7) |
|
Part IV Concurrent Systems |
|
|
|
11 CCS, the Calculus of Communicating Systems |
|
|
221 | (50) |
|
11.1 From Sequential to Concurrent Systems |
|
|
221 | (6) |
|
|
227 | (1) |
|
11.3 Operational Semantics of CCS |
|
|
228 | (9) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
229 | (1) |
|
|
229 | (1) |
|
11.3.6 Parallel Composition |
|
|
230 | (1) |
|
|
231 | (4) |
|
11.3.8 CCS with Value Passing |
|
|
235 | (1) |
|
11.3.9 Recursive Declarations and the Recursion Operator |
|
|
235 | (2) |
|
11.4 Abstract Semantics of CCS |
|
|
237 | (15) |
|
|
237 | (2) |
|
|
239 | (2) |
|
11.4.3 Strong Bisimilarity |
|
|
241 | (11) |
|
|
252 | (3) |
|
11.5.1 Strong Bisimilarity Is a Congruence |
|
|
253 | (2) |
|
11.6 A Logical View of Bisimilarity: Hennessy-Milner Logic |
|
|
255 | (4) |
|
11.7 Axioms for Strong Bisimilarity |
|
|
259 | (2) |
|
11.8 Weak Semantics of CCS |
|
|
261 | (10) |
|
|
262 | (2) |
|
11.8.2 Weak Observational Congruence |
|
|
264 | (1) |
|
11.8.3 Dynamic Bisimilarity |
|
|
265 | (2) |
|
|
267 | (4) |
|
12 Temporal Logic and the jti-Calculus |
|
|
271 | (16) |
|
12.1 Specification and Verification |
|
|
271 | (1) |
|
|
272 | (6) |
|
12.2.1 Linear Temporal Logic |
|
|
273 | (2) |
|
12.2.2 Computation Tree Logic |
|
|
275 | (3) |
|
|
278 | (4) |
|
|
282 | (5) |
|
|
284 | (3) |
|
|
287 | (22) |
|
|
287 | (4) |
|
13.2 Syntax of the π-Calculus |
|
|
291 | (1) |
|
13.3 Operational Semantics of the π-Calculus |
|
|
292 | (5) |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
13.3.5 Parallel Composition |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
|
13.3.9 A Sample Derivation |
|
|
297 | (1) |
|
13.4 Structural Equivalence in the π-Calculus |
|
|
297 | (2) |
|
13.4.1 Reduction Semantics |
|
|
298 | (1) |
|
13.5 Abstract Semantics of the π-Calculus |
|
|
299 | (10) |
|
13.5.1 Strong Early Ground Bisimulations |
|
|
300 | (1) |
|
13.5.2 Strong Late Ground Bisimulations |
|
|
301 | (1) |
|
13.5.3 Compositionality and Strong Full Bisimilarities |
|
|
302 | (1) |
|
13.5.4 Weak Early and Late Ground Bisimulations |
|
|
303 | (1) |
|
|
304 | (5) |
|
Part V Probabilistic Systems |
|
|
|
14 Measure Theory and Markov Chains |
|
|
309 | (24) |
|
14.1 Probabilistic and Stochastic Systems |
|
|
309 | (1) |
|
|
310 | (3) |
|
14.2.1 Constructing a CT-Field |
|
|
311 | (2) |
|
14.3 Continuous Random Variables |
|
|
313 | (6) |
|
14.3.1 Stochastic Processes |
|
|
318 | (1) |
|
|
319 | (14) |
|
14.4.1 Discrete and Continuous Time Markov Chains |
|
|
320 | (1) |
|
|
320 | (3) |
|
14.4.3 DTMC Steady State Distribution |
|
|
323 | (1) |
|
|
324 | (1) |
|
14.4.5 Embedded DTMC of a CTMC |
|
|
325 | (1) |
|
|
326 | (2) |
|
|
328 | (1) |
|
|
329 | (4) |
|
15 Discrete Time Markov Chains with Actions and Nondeterminism |
|
|
333 | (10) |
|
15.1 Reactive and Generative Models |
|
|
333 | (1) |
|
|
334 | (3) |
|
|
336 | (1) |
|
15.3 DTMC with Nondeterminism |
|
|
337 | (6) |
|
|
337 | (1) |
|
15.3.2 Simple Segala Automata |
|
|
338 | (1) |
|
15.3.3 Nondeterminism, Probability and Actions |
|
|
339 | (1) |
|
|
340 | (3) |
|
16 PEPA - Performance Evaluation Process Algebra |
|
|
343 | (14) |
|
16.1 From Qualitative to Quantitative Analysis |
|
|
343 | (1) |
|
|
344 | (3) |
|
|
344 | (1) |
|
16.2.2 Operational Semantics of CSP |
|
|
345 | (2) |
|
|
347 | (10) |
|
|
347 | (2) |
|
16.3.2 Operational Semantics of PEPA |
|
|
349 | (5) |
|
|
354 | (3) |
Solutions |
|
357 | |