Muutke küpsiste eelistusi

Modern Methodology and Applications in Spatial-Temporal Modeling 1st ed. 2015 [Pehme köide]

  • Formaat: Paperback / softback, 111 pages, kõrgus x laius: 235x155 mm, kaal: 2291 g, 4 Illustrations, color; 13 Illustrations, black and white; XV, 111 p. 17 illus., 4 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Statistics
  • Ilmumisaeg: 19-Jan-2016
  • Kirjastus: Springer Verlag, Japan
  • ISBN-10: 443155338X
  • ISBN-13: 9784431553380
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 111 pages, kõrgus x laius: 235x155 mm, kaal: 2291 g, 4 Illustrations, color; 13 Illustrations, black and white; XV, 111 p. 17 illus., 4 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Statistics
  • Ilmumisaeg: 19-Jan-2016
  • Kirjastus: Springer Verlag, Japan
  • ISBN-10: 443155338X
  • ISBN-13: 9784431553380
?This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.
1 Nonparametric Bayesian Inference with Kernel Mean Embedding
1(24)
Kenji Fukumizu
2 How to Utilize Sensor Network Data to Efficiently Perform Model Calibration and Spatial Field Reconstruction
25(38)
Gareth W. Peters
Ido Nevat
Tomoko Matsui
3 Speech and Music Emotion Recognition Using Gaussian Processes
63(24)
Konstantin Markov
Tomoko Matsui
4 Topic Modeling for Speech and Language Processing
87
Jen-Tzung Chien