Muutke küpsiste eelistusi

Modern Methods in Topological Vector Spaces [Pehme köide]

  • Formaat: Paperback / softback, 316 pages, kõrgus x laius x paksus: 235x156x16 mm, kaal: 418 g
  • Sari: Dover Books on Mathema 1.4tics
  • Ilmumisaeg: 30-Jan-2014
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 0486493539
  • ISBN-13: 9780486493534
  • Formaat: Paperback / softback, 316 pages, kõrgus x laius x paksus: 235x156x16 mm, kaal: 418 g
  • Sari: Dover Books on Mathema 1.4tics
  • Ilmumisaeg: 30-Jan-2014
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 0486493539
  • ISBN-13: 9780486493534
Wilansky presents this mathematics text for advanced undergraduates and beginning graduate students on the subject of topological vector spaces. Chapter 1 presents basic foundations and definitions of set theory, computation, vector spaces, and topology. Next covered are metrics, Banach space, construction of topological vector spaces, map and graph theorems, local convexity, and an assortment of additional topics deemed necessary to proceed to chapter 8, which addresses duality. The remainder of the book proceeds from this theme, discussing equicontinuity, the strong topology, operators, completeness, inductive limits, compactness, and barrelled spaces. An appendix of tables summarizes theorems treated. The text is written in technical mathematical style, consisting mostly of proofs with clearly labeled lemmas, corollaries, examples, remarks, and practice problems. Annotation ©2014 Book News, Inc., Portland, OR (booknews.com)

Geared toward beginning graduate students of mathematics, this text covers Banach space, open mapping and closed graph theorems, local convexity, duality, equicontinuity, operators, inductive limits, and compactness and barrelled spaces. 1978 edition.


Preface xi
1 Introduction
1(14)
1-1 Explanatory
1(1)
1-2 Table of spaces
2(1)
1-3 Some computations
3(2)
1-4 Nets
5(2)
1-5 Vector space
7(3)
1-6 Topology
10(5)
2 Metric Ideas
15(12)
2-1 Paranorms
15(3)
2-2 Seminorms
18(3)
2-3 Seminormed space
21(6)
3 Banach Space
27(10)
3-1 Banach space
27(2)
3-2 The second dual
29(3)
3-3 Uniform boundedness
32(5)
4 Topological Vector Spaces
37(19)
4-1 Definitions and examples
37(3)
4-2 Properties
40(4)
4-3 Construction
44(3)
4-4 Bounded sets
47(3)
4-5 Metrization
50(6)
5 Open Mapping and Closed Graph Theorems
56(16)
5-1 Frechet space
56(1)
5-2 Open maps
57(3)
5-3 Closed graph
60(4)
5-4 The basis
64(3)
5-5 FH spaces
67(5)
6 Five Topics
72(19)
6-1 Completeness
72(5)
6-2 Quotients
77(4)
6-3 Finite-dimensional space
81(2)
6-4 Totally bounded sets
83(4)
6-5 Compact sets
87(4)
7 Local Convexity
91(12)
7-1 Locally convex space
91(3)
7-2 Seminorms
94(4)
7-3 Separation and support
98(5)
8 Duality
103(25)
8-1 Compatible topologies
103(4)
8-2 Dual pairs
107(3)
8-3 Polars
110(4)
8-4 Boundedness
114(4)
8-5 Polar topologies
118(5)
8-6 Some complete spaces
123(5)
9 Equicontinuity
128(21)
9-1 Equicontinuous sets
128(4)
9-2 The Mackey-Arens theorem
132(4)
9-3 Barrelled spaces
136(5)
9-4 The equivalence program
141(2)
9-5 Separable spaces
143(2)
9-6 Applications
145(4)
10 The Strong Topology
149(15)
10-1 The natural embedding
149(4)
10-2 Semireflexivity
153(3)
10-3 Reflexivity
156(1)
10-4 Boundedness
157(5)
10-5 Metric space
162(2)
11 Operators
164(14)
11-1 Dual operators
164(3)
11-2 The Hellinger-Toeplitz theorem
167(2)
11-3 Banach space
169(5)
11-4 Weakly compact operators on Banach spaces
174(4)
12 Completeness
178(31)
12-1 Precompact convergence
178(6)
12-2 aw*
184(5)
12-3 Strict hypercompleteness
189(4)
12-4 Full completeness
193(7)
12-5 Closed graph theorems
200(4)
12-6 Converse theorems
204(5)
13 Inductive Limits
209(18)
13-1 Inductive limits
209(4)
13-2 Direct sums
213(5)
13-3 Strict inductive limits
218(6)
13-4 Finite collections of metric spaces
224(3)
14 Compactness
227(21)
14-1 Weak compactness
227(4)
14-2 Convex compactness
231(2)
14-3 Extreme points
233(2)
14-4 Phillips'lemma
235(4)
14-5 The space L
239(1)
14-6 The space M(H)
240(4)
14-7 GB and G spaces
244(4)
15 Barrelled Spaces
248(19)
15-1 Barrelled subspaces
248(4)
15-2 Inclusion theorems
252(2)
15-3 The separable quotient problem
254(4)
15-4 The strong topology
258(6)
15-5 Miscellaneous
264(3)
Tables 267(16)
Bibliography 283(5)
Subject index 288