Muutke küpsiste eelistusi

Modern Power Electronics and AC Drives [Kõva köide]

  • Formaat: Hardback, 736 pages, kõrgus x laius x paksus: 242x186x32 mm, kaal: 1219 g
  • Ilmumisaeg: 24-Oct-2001
  • Kirjastus: Prentice Hall
  • ISBN-10: 0130167436
  • ISBN-13: 9780130167439
Teised raamatud teemal:
  • Kõva köide
  • Hind: 115,29 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 736 pages, kõrgus x laius x paksus: 242x186x32 mm, kaal: 1219 g
  • Ilmumisaeg: 24-Oct-2001
  • Kirjastus: Prentice Hall
  • ISBN-10: 0130167436
  • ISBN-13: 9780130167439
Teised raamatud teemal:
For upper level undergraduate and graduate level courses in electrical engineering, as well as a reference book for professionals and researchers.

This text presents the basics of electrical power conversion and control through the use of power semiconductor switches. In addition, by demonstrating the practical applications of power electronics and motion control using AC electrical machines in transportation and industry, among other uses, Modern Power Electronics and AC Drives reflects the latest advances in industrial automation.
Preface xvii
List of Principal Symbols
xix
Power Semiconductor Devices
1(28)
Introduction
1(1)
Diodes
2(2)
Thyristors
4(4)
Volt-Ampere Characteristics
5(1)
Switching Characteristics
6(1)
Power Loss and Thermal Impedance
6(2)
Current Rating
8(1)
Triacs
8(2)
Gate Turn-Off Thyristors (GTOs)
10(4)
Switching Characteristics
11(3)
Regenerative Snubbers
14(1)
Bipolar Power or Junction Transistors (BPTs or BJTs)
14(3)
Power MOSFETs
17(2)
V-I Characteristics
17(1)
Safe Operating Area (SOA)
17(2)
Static Induction Transistors (SITs)
19(1)
Insulated Gate Bipolar Transistors (IGBTs)
20(4)
Switching Characteristics and Thermal Impedance
22(2)
MOS-Controlled Thyristors (MCTs)
24(1)
Integrated Gate-Commutated Thyristors (IGCTs)
25(1)
Large Band-Gap Materials for Devices
26(1)
Power Integrated Circuits (PICs)
26(1)
Summary
27(2)
AC Machines for Drives
29(70)
Introduction
29(1)
Induction Machines
30(44)
Rotating Magnetic Field
30(3)
Torque Production
33(2)
Equivalent Circuit
35(1)
Equivalent Circuit Analysis
35(4)
Torque-Speed Curve
39(3)
NEMA Classification of Machines
42(1)
Variable-Voltage, Constant-Frequency Operation
42(1)
Variable-Frequency Operation
43(1)
Constant Volts/Hz Operation
44(2)
Drive Operating Regions
46(1)
Variable Stator Current Operation
47(2)
The Effect of Harmonics
49(1)
Harmonic Heating
49(4)
Machine Parameter Variation
53(1)
Torque Pulsation
53(3)
Dynamic d-q Model
56(1)
Axes Transformation
57(6)
Synchronously Rotating Reference Frame---Dynamic Model (Kron Equation)
63(4)
Stationary Frame-Dynamic Model (Stanley Equation)
67(3)
Dynamic Model State-Space Equations
70(4)
Synchronous Machines
74(20)
Wound Field Machine
74(2)
Equivalent Circuit
76(3)
Developed Torque
79(1)
Salient Pole Machine Characteristics
80(3)
Dynamic de-qe Machine Model (Park Model)
83(3)
Synchronous Reluctance Machine
86(1)
Permanent Magnet (PM) Machine
86(1)
Permanent Magnet Materials
86(3)
Sinusoidal Surface Magnet Machine (SPM)
89(1)
Sinusoidal Interior Magnet Machine (IPM)
89(4)
Trapezoidal Surface Magnet Machine
93(1)
Variable Reluctance Machine (VRM)
94(2)
Summary
96(3)
Diodes and Phase-Controlled Converters
99(54)
Introduction
99(1)
Diode Rectifiers
100(12)
Single-Phase Bridge - R, RL Load
100(3)
Effect of Source Inductance
103(1)
Single-Phase Bridge - RL, CEMF Load
104(1)
Single-Phase Bridge - CR Load
105(2)
Distortion, Displacement, and Power Factors
107(1)
Distortion Factor (DF)
108(1)
Displacement Power Factor (DPF)
108(1)
Power Factor (PF)
109(1)
Three-Phase Full Bridge - RL Load
109(3)
Three-Phase Bridge - CR Load
112(1)
Thyristor Converters
112(29)
Single-Phase Bridge - RL, CEMF Load
112(6)
Discontinuous Conduction
118(4)
Three-Phase Converter - RL, CEMF Load
122(1)
Three-Phase, Half-Wave Converter
122(2)
Analysis for Line Leakage Inductance (Lc)
124(4)
Three-Phase Bridge Converter
128(4)
Discontinuous Conduction
132(4)
Three-Phase Dual Converter
136(1)
Six-Pulse, Center-Tap Converter
136(1)
12-Pulse Converter
137(3)
Concurrent and Sequential Control of Bridge Converters
140(1)
Converter Control
141(7)
Linear Firing Angle Control
142(1)
Cosine Wave Crossing Control
142(3)
Phase-Locked Oscillator Principle
145(3)
EMI and Line Power Quality Problems
148(3)
EMI Problems
148(1)
Line Harmonic Problems
149(2)
Summary
151(2)
Cycloconverters
153(38)
Introduction
153(1)
Phase-Controlled Cycloconverters
154(31)
Operation Principles
154(2)
A Three-Phase Dual Converter as a Cycloconverter
156(2)
Cycloconverter Circuits
158(1)
Three-Phase, Half-Wave Cycloconverter
158(2)
Three-Phase Bridge Cycloconverter
160(1)
Modulation Factor
160(2)
Circulating vs. Non-Circulating Current Mode
162(1)
Circulating Current Mode
162(4)
Blocking Mode
166(1)
Load and Line Harmonics
167(1)
Load Voltage Harmonics
167(4)
Line Current Harmonics
171(1)
Line Displacement Power Factor
171(2)
Theoretical Derivation of Line DPF
173(4)
Control of Cycloconverter
177(3)
DPF Improvement Methods
180(1)
Square-Wave Operation
180(1)
Asymmetrical Firing Angle Control
180(3)
Circulating Current Control
183(2)
Matrix Converters
185(1)
High-Frequency Cycloconverters
186(3)
High-Frequency, Phase-Controlled Cycloconverter
187(1)
High-Frequency, Integral-Pulse Cycloconverter
187(1)
Sinusoidal Supply
187(1)
Quasi-Square-Wave Supply
188(1)
Summary
189(1)
References
189(2)
Voltage-Fed Converters
191(80)
Introduction
191(1)
Single-Phase Inverters
192(5)
Half-Bridge and Center-Tapped Inverters
192(1)
Full, or H-Bridge, Inverter
193(2)
Phase-Shift Voltage Control
195(2)
Three-Phase Bridge Inverters
197(9)
Square-Wave, or Six-Step, Operation
197(4)
Motoring and Regenerative Modes
201(1)
Input Ripple
202(1)
Device Voltage and Current Ratings
203(1)
Phase-Shift Voltage Control
203(2)
Voltage and Frequency Control
205(1)
Multi-Stepped Inverters
206(4)
12-Step Inverter
207(2)
18-Step Inverter by Phase-Shift Control
209(1)
Pulse Width Modulation Techniques
210(30)
PWM Principle
210(1)
PWM Classification
210(1)
Sinusoidal PWM
211(7)
Selected Harmonic Elimination PWM
218(5)
Minimum Ripple Current PWM
223(1)
Space-Vector PWM
224(12)
Sinusoidal PWM with Instantaneous Current Control
236(1)
Hysteresis-Band Current Control PWM
236(3)
Sigma-Delta Modulation
239(1)
Three-Level Inverters
240(5)
Control of Neutral Point Voltage
243(2)
Hard Switching Effects
245(2)
Resonant Inverters
247(2)
Soft-Switched Inverters
249(4)
Soft Switched Principle
249(1)
Inverter Circuits
249(4)
Dynamic and Regenerative Drive Braking
253(2)
Dynamic Braking
253(1)
Regenerative Braking
254(1)
PWM Rectifiers
255(7)
Diode Rectifier with Boost Chopper
255(1)
Single-Phase
255(2)
Three-Phase
257(1)
PWM Converter as Line-Side Rectifier
258(1)
Single-Phase
258(1)
Three-Phase
259(3)
Static VAR Compensators and Active Harmonic Filters
262(2)
Introduction to Simulation-MATLAB/SIMULINK
264(3)
Summary
267(2)
References
269(2)
Current-Fed Converters
271(36)
Introduction
271(1)
General Operation of a Six-Step Thyristor Inverter
272(5)
Inverter Operation Modes
274(1)
Mode 1: Load-Commutated Rectifier (0 < α < π/2)
274(2)
Mode 2: Load-Commutated Inverter (π/2 < α < π)
276(1)
Mode 3: Force-Commutated Inverter (π < α α 3π/2)
276(1)
Mode 4: Force-Commutated Rectifier (3π/4 < α < 2π)
276(1)
Load-Commutated Inverters
277(8)
Single-Phase Resonant Inverter
277(1)
Circuit Analysis
278(3)
Three-Phase Inverter
281(1)
Lagging Power Factor Load
281(1)
Over-Excited Synchronous Machine Load
282(2)
Synchronous Motor Starting
284(1)
Force-Commutated Inverters
285(2)
Auto-Sequential Current-Fed Inverter (ASCI)
285(2)
Harmonic Heating and Torque Pulsation
287(2)
Multi-Stepped Inverters
289(1)
Inverters with Self-Commutated Devices
290(13)
Six-Step Inverter
290(3)
Load Harmonic Resonance Problem
293(1)
PWM Inverters
294(1)
Trapezoidal PWM
295(2)
Selected Harmonic Elimination PWM (SHE-PWM)
297(2)
Double-Sided PWM Converter System
299(3)
PWM Rectifier Applications
302(1)
Static VAR Compensator/Active Filter
302(1)
Superconducting Magnet Energy Storage (SMES)
303(1)
DC Motor Speed Control
303(1)
Current-Fed vs. Voltage-Fed Converters
303(2)
Summary
305(1)
References
305(2)
Introduction Motor Slip-Power Recovery Drives
307(26)
Introduction
307(1)
Doubly-Fed Machine Speed Control by Rotor Rheostat
308(1)
Static Kramer Drive
309(15)
Phasor Diagram
313(3)
AC Equivalent Circuit
316(3)
Torque Expression
319(2)
Harmonics
321(1)
Speed Control of a Kramer Drive
322(1)
Power Factor Improvement
322(2)
Static Scherius Drive
324(7)
Modes of Operation
326(2)
Modified Scherbius Drive for VSCF Power Generation
328(3)
Summary
331(1)
References
331(2)
Control and Estimation of Induction Motor Drives
333(106)
Introduction
333(1)
Induction Motor Control with Small Signal Model
334(4)
Small-Signal Model
335(3)
Scalar Control
338(18)
Voltage-Fed Inverter Control
339(1)
Open Loop Volts/Hz Control
339(3)
Energy Conservation Effect by Variable Frequency Drive
342(1)
Speed Control with Slip Regulation
342(3)
Speed Control with Torque and Flux Control
345(1)
Current-Controlled Voltage-Fed Inverter Drive
346(2)
Traction Drives with Parallel Machines
348(2)
Current-Fed Inverter Control
350(1)
Independent Current and Frequency Control
350(1)
Speed and Flux Control in Current-Fed Inverter Drive
351(1)
Volts/Hz Control of Current-Fed Inverter Drive
352(1)
Efficiency Optimization Control by Flux Program
352(4)
Vector or Field-Oriented Control
356(32)
DC Drive Analogy
356(2)
Equivalent Circuit and Phasor Diagram
358(1)
Principles of Vector Control
359(1)
Direct or Feedback Vector Control
360(3)
Flux Vector Estimation
363(1)
Voltage Model
363(3)
Current Model
366(2)
Indirect or Feedforward Vector Control
368(7)
Indirect Vector Control Slip Gain (Ks) Tuning
375(3)
Vector Control of Line-Side PWM Rectifier
378(3)
Stator Flux-Oriented Vector Control
381(3)
Vector Control of Current-Fed Inverter Drive
384(1)
Vector Control of Cycloconverter Drive
385(3)
Sensorless Vector Control
388(20)
Speed Estimation Methods
388(1)
Slip Calculation
388(1)
Direct Synthesis from State Equations
389(1)
Model Referencing Adaptive System (MRAS)
390(2)
Speed Adaptive Flux Observer (Luenberger Observer)
392(4)
Extended Kalman Filter (EKF)
396(3)
Slot Harmonics
399(1)
Injection of Auxiliary Signal on Salient Rotor
399(2)
Direct Vector Control without Speed Signal
401(1)
Programmable Cascaded Low-Pass Filter (PCLPF) Stator Flux Estimation
401(3)
Drive Machine Start-up with Current Model Equations
404(4)
Direct Torque and Flux Control (DTC)
408(5)
Torque Expression with Stator and Rotor Fluxes
408(2)
Control Strategy of DTC
410(3)
Adaptive Control
413(17)
Self-Tuning Control
414(1)
Load Torque Disturbance (TL) Compensation
415(1)
Model Referencing Adaptive Control (MRAC)
416(3)
Sliding Mode Control
419(1)
Control Principle
419(5)
Sliding Trajectory Control of a Vector Drive
424(6)
Self-Commissioning of Drive
430(5)
Summary
435(1)
References
435(4)
Control and Estimation of Synchronous Motor Drives
439(96)
Introduction
439(1)
Sinusoidal SPM Machine Drives
440(15)
Open Loop Volts/Hertz Control
440(4)
Self-Control Model
444(2)
Absolute Position Encoder
446(1)
Optical Encoder
446(2)
Analog Resolver with Decoder
448(1)
Vector Control
449(2)
Field-Weakening Mode
451(4)
Synchronous Reluctance Machine Drives
455(10)
Current Vector Control of SyRM Drive
457(1)
Constant de -Axis Current (ids) Control
458(1)
Fast Torque Response Control
459(4)
Maximum Torque/Ampere Control
463(1)
Maximum Power Factor Control
463(2)
Sinusoidal IPM Machine Drives
465(18)
Current Vector Control with Maximum Torque/Ampere
465(3)
Field-Weakening Control
468(3)
Vector Control with Stator Flux Orientation
471(6)
Feedback Signal Processing
477(2)
Square-Wave (SW) Mode Field-Weakening Control
479(3)
PWM-Square-Wave Sequencing
482(1)
Trapezoidal SPM Machine Drives
483(12)
Drive Operation with Inverter
483(2)
2π/3 Angle Switch-on Mode
485(1)
PWM Voltage and Current Control Mode
486(1)
Torque-Speed Curve
486(3)
Machine Dynamic Model
489(1)
Drive Control
490(1)
Close Loop Speed Control in Feedback Mode
490(2)
Close Loop Current Control in Freewheeling Mode
492(1)
Torque Pulsation
493(1)
Extended Speed Operation
494(1)
Wound-Field Synchronous Machine Drives
495(20)
Brush and Brushless dc Excitation
495(1)
Load-Commutated Inverter (LCI) Drive
496(2)
Control of LCI Drive with Constant γ Angle
498(3)
Delay angle αd or ψ Angle Control
501(3)
Control with Machine Terminal Voltage Signals
504(2)
Phase-Locked Loop (PLL) γ Angle Control
506(1)
Scalar Control of Cycloconverter Drive
507(3)
Vector Control of Cycloconverter Drive
510(3)
Vector Control with Voltage-Fed Inverter
513(2)
Sensorless Control
515(14)
Trapezoidal SPM Machine
515(1)
Terminal Voltage Sensing
515(4)
Stator Third Harmonic Voltage Detection
519(3)
Sinusoidal PM Machine (PMSM)
522(1)
Terminal Voltage and Current Sensing
522(2)
Inductance Variation (saliency) Effect
524(2)
Extended Kalman Filter (EKF)
526(3)
Switched Reluctance Motor (SRM) Drives
529(3)
Summary
532(1)
References
533(2)
Expert System Principles and Applications
535(24)
Introduction
535(1)
Expert System Principles
536(7)
Knowledge Base
537(2)
Frame Structure
539(1)
Meta-Knowledge
540(1)
ES Language
540(1)
Inference Engine
541(1)
User Interface
541(2)
Expert System Shell
543(3)
Shell Features
543(1)
External Interface
543(1)
Program Development Steps
544(2)
Design Methodology
546(1)
Applications
546(9)
P-I Control Tuning of a Drive
547(1)
Fault Diagnostics
547(2)
Selection of Commercial ac Drive Product
549(1)
Configuration Selection, Design, and Simulation of a Drive System
549(1)
Configuration Selection
550(1)
Motor Ratings Design
550(2)
Converter Design
552(2)
Control Design and Simulation Study
554(1)
Glossary
555(1)
Summary
556(1)
References
557(2)
Fuzzy Logic Principles and Applications
559(66)
Introducation
559(1)
Fuzzy Sets
560(6)
Membership Functions
561(3)
Operations on Fuzzy Sets
564(2)
Fuzzy System
566(10)
Implication Methods
569(1)
Mamdani Type
569(1)
Lusing Larson Type
570(1)
Sugeno Type
571(2)
Defuzzification Methods
573(1)
Center of Area (COA) Method
573(2)
Height Method
575(1)
Mean of Maxima (MOM) Method
575(1)
Sugeno Method
576(1)
Fuzzy Control
576(5)
Why Fuzzy Control?
576(1)
Historical Perspective
576(1)
Control Principle
577(4)
Control Implementation
581(1)
General Design Methodology
581(1)
Applications
582(27)
Induction Motor Speed Control
582(3)
Flux Programming Efficiency Improvement of Induction Motor Drive
585(4)
Pulsating Torque Compensation
589(2)
Wind Generation System
591(1)
Wind Turbine Characteristics
592(1)
System Description
592(1)
Fuzzy Control
593(4)
Slip Gain Tuning of Indirect Vector Control
597(1)
Derivation of Q* and Vds*
598(4)
Stator Resistance RS Estimation
602(4)
Estimation of Distorted Waves
606(2)
Mamdani Method
608(1)
Sugeno Method
609(1)
Fuzzy Logic Toolbox
609(10)
FIS Editor
611(1)
Membership Function Editor
611(1)
Rule Editor
612(1)
Rule Viewer
612(1)
Surface Viewer
613(1)
Demo Program for Synchronous Current Control
613(6)
Glossary
619(3)
Summary
622(1)
References
623(2)
Neural Network Principles and Applications
625(66)
Introduction
625(1)
The Structure of a Neuron
626(3)
The Concept of a Biological Neuron
626(1)
Artificial Neuron
627(1)
Activation Functions of a Neuron
628(1)
Artifical Neural Network
629(15)
Example Application: Y = Asin X
632(1)
Training of Feedforward Neural Network
632(2)
Learning Methods
634(1)
Alphabet Character Recognition by an ANN
634(3)
Back Propagation Training
637(1)
Back propagation Algorithm for Three-Layer Network
637(1)
Weight Calculation for Output Layer Neurons
637(4)
Weight Calculation for Hidden Layer Neourns
641(2)
On-Line Training
643(1)
Other Networks
644(6)
Radial Basis Function Network
644(1)
Kohonen's Self-Organizing Feature Map Network
645(1)
Recurrent Neural Network for Dynamic System
646(1)
Training an RNN by the EKF Algorithm
647(3)
Neural Network in Identification and Control
650(7)
Time-Delayed Neural Network
650(1)
Dynamic System Models
650(2)
ANN Identification of Dynamic Models
652(2)
Inverse Dynamics Model
654(1)
Neural Network-Based Control
655(2)
General Design Methodology
657(1)
Applications
658(20)
PWM Controller
658(1)
Selected Harmonic Elimination (SHE) PWM
658(1)
Instantaneous Current Control PWM
659(1)
Space Vector PWM
660(7)
Vector-Controlled Drive Feedback Signal Estimation
667(3)
Estimation of Distorted Waves
670(1)
Model Identification and Adaptive Drive Control
671(4)
Speed Estimation by RNN
675(1)
Adaptive Flux Estimation by RNN
676(2)
Neuro-Fuzzy Systems
678(4)
ANNBased Fuzzy Inference System (ANFIS)
678(4)
Demo Program With Neural Network Toolbox
682(2)
Introduction to Neural Network Toolbox
682(1)
Demo Program
683(1)
Glossary
684(5)
Summary
689(1)
References
690(1)
Index 691
DR. BIMAL K. BOSE is recognized worldwide as an authority and pioneer in the field of power electronics and drive technology. He has over 40 years of professional experience in R&D, design, and teaching. A seven-time IEEE Award winner, he holds 21 U.S. patents. He is currently at the University of Tennessee, where he holds the Condra Chair of Excellence in Power Electronics.