Preface |
|
vii | |
Introduction |
|
1 | (2) |
|
Chapter 1 Moduli Spaces Associated to Dynamical Systems |
|
|
3 | (8) |
|
1.1 Dynamical definitions |
|
|
3 | (2) |
|
1.2 Moduli spaces: what they are and why they're useful |
|
|
5 | (1) |
|
1.3 Fine moduli spaces and coarse moduli spaces |
|
|
5 | (1) |
|
1.4 Parameter spaces for dynamical systems |
|
|
6 | (2) |
|
1.5 Moduli spaces for dynamical systems |
|
|
8 | (1) |
|
1.6 Level structure and the uniform boundedness conjecture |
|
|
8 | (3) |
|
Chapter 2 The Geometry of Dynamical Moduli Spaces |
|
|
11 | (34) |
|
2.1 Introduction to geometric invariant theory (GIT) |
|
|
12 | (5) |
|
2.2 Tools for computing the stable and semistable loci |
|
|
17 | (3) |
|
2.3 Construction of moduli spaces Mnd using GIT |
|
|
20 | (4) |
|
2.4 Multipliers and maps on Md |
|
|
24 | (6) |
|
2.5 M2 is isomorphic to A2 |
|
|
30 | (4) |
|
2.6 Uniform bounds for Aut(ø) |
|
|
34 | (2) |
|
|
36 | (3) |
|
|
39 | (6) |
|
Chapter 3 Dynamical Moduli Spaces---Further Topics |
|
|
45 | (12) |
|
3.1 An application to good reduction over function fields |
|
|
45 | (2) |
|
3.2 Minimal resultants and minimal models |
|
|
47 | (3) |
|
3.3 Dynamics on K3 Surfaces |
|
|
50 | (3) |
|
3.4 An algebraic characterization of Lattes maps |
|
|
53 | (4) |
|
Chapter 4 Dynatomic Polynomials and Dynamical Modular Curves |
|
|
57 | (12) |
|
4.1 Dynatomic polynomials |
|
|
57 | (2) |
|
4.2 Dynamical modular curves for z2 + c |
|
|
59 | (1) |
|
4.3 Irreducibility and genus formulas |
|
|
60 | (5) |
|
4.4 Rational points on dynamical modular curves |
|
|
65 | (1) |
|
4.5 Other dynamical modular curves |
|
|
65 | (4) |
|
Chapter 5 Canonical Heights |
|
|
69 | (22) |
|
5.1 Heights and projective space |
|
|
69 | (1) |
|
5.2 Dynamical canonical heights |
|
|
70 | (3) |
|
5.3 Canonical height zero over function fields |
|
|
73 | (3) |
|
5.4 Local heights and Green functions |
|
|
76 | (1) |
|
5.5 Specialization theorems |
|
|
77 | (4) |
|
5.6 Heights and dominant rational maps |
|
|
81 | (2) |
|
5.7 Canonical heights for regular affine automorphisms |
|
|
83 | (1) |
|
5.8 Canonical heights for K3 dynamics |
|
|
84 | (4) |
|
5.9 Algebraic dynamics and transcendental numbers |
|
|
88 | (3) |
|
Chapter 6 Postcritically Finite Maps |
|
|
91 | (22) |
|
6.1 Transversality of the PCF locus |
|
|
92 | (8) |
|
6.2 The height of a postcritically finite map |
|
|
100 | (7) |
|
6.3 The invariant measure and the Lyapunov exponent |
|
|
107 | (2) |
|
|
109 | (1) |
|
6.5 A dynamical Andre-Oort conjecture |
|
|
110 | (3) |
|
Chapter 7 Field of Moduli and Field of Definition |
|
|
113 | (8) |
|
7.1 Twists, automorphisms, and cohomology |
|
|
113 | (3) |
|
7.2 Fields of definition and field of moduli |
|
|
116 | (1) |
|
7.3 Tools for determining when FOM = FOD |
|
|
117 | (4) |
Schedule of Talks at the Bellairs Workshop |
|
121 | (2) |
Glossary |
|
123 | (4) |
Bibliography |
|
127 | (6) |
Index |
|
133 | |