Muutke küpsiste eelistusi

Moment Analysis for Subsurface Hydrologic Applications 2007 ed. [Kõva köide]

  • Formaat: Hardback, 296 pages, kõrgus x laius: 235x155 mm, kaal: 1340 g, X, 296 p., 1 Hardback
  • Sari: Water Science and Technology Library 61
  • Ilmumisaeg: 29-Jun-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1402057512
  • ISBN-13: 9781402057519
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 296 pages, kõrgus x laius: 235x155 mm, kaal: 1340 g, X, 296 p., 1 Hardback
  • Sari: Water Science and Technology Library 61
  • Ilmumisaeg: 29-Jun-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1402057512
  • ISBN-13: 9781402057519
This book deals with the concept of moments, and how they find application in subsurface hydrologic problems-particularly those dealing with solute transport. This book will be very valuable to researchers who are beginning to learn about moment analysis, and will also be of interest to advanced researchers as well. Both temporal and spatial moments are dealt with in some detail for a wide variety of problems. Several examples using experimental data, both from laboratory columns and field experiments, are provided to give the readers a clear idea about the scope of this method. Apart from conventional uses of moments for solute transport problems, this book contains chapters dealing with use of moments in interval computing, vapour phase transport applications, transfer functions to subsurface tile drains, and construction of breakthrough curves from knowledge of moments.

Arvustused

From the reviews:









"This book studies specific aspects of moment analysis for PDE governing the contaminant transport analysis; it contains 12 chapters. A large number of experimental data illustrate the theoretical results. The mathematical tools are presented in a very elegant form, useful also for students and for advanced researchers. A large reference list is given." (Gelu Pasa, Zentralblatt MATH, Vol. 1128 (6), 2008)

Preface ix
Random Variables and Generating Functions
1(28)
Introduction to Random Variables
1(6)
Expectation
7(3)
The Characteristic Function
10(3)
The Laplace Transform
13(1)
Probability Generating Functions
14(3)
Cumulants and Cumulant Generating Functions
17(2)
Probability Weighted Moments
19(1)
L-Moments
19(1)
Experimental and Theoretical Moments
20(9)
Gamma Distribution
21(1)
Fickian Distribution
22(1)
Log-Normal Distribution
22(4)
Appendix A: Exponential Distributions
26(1)
Appendix B: Maximum Likelihood Estimation
27(2)
Laplace Transforms for Solute Transport Models
29(28)
Definition of the Transform and its Inverse
29(3)
Singularities of the Laplace Transform
32(2)
Green's Functions for Initial Value Problems
34(1)
Solute Transport by Diffusion
35(3)
Advective -- Dispersive Solute Transport Model
38(5)
Role of Boundary Conditions
43(3)
The Mobile -- Immobile Water Model
46(3)
The Physical Nonequilibrium Model
49(3)
The Chemical Nonequilibrium Model
52(2)
Nonequilibrium Sorption by Diffusion into Spherical Grains
54(3)
Fourier Transforms for Solute Transport Models
57(20)
Solute Transport by Diffusion
57(3)
Fourier Transform Pair
60(1)
Fourier Transform of the Diffusion Equation
61(2)
Fourier Transforms of Derivatives
63(2)
Fourier Sine and Cosine Transforms
65(5)
Fourier Transform Solution for Advection-Dispersion Equation Over an Infinite Domain
70(1)
Fourier Sine Transform for Advection-Dispersion Equation Over Semi-Infinite Domains
71(1)
Fourier Transforms in Higher Dimensions
72(5)
Transfer Function Approaches
77(28)
Residence Time Distributions
77(1)
Models of Solute Transport
78(5)
Depth Moments of the Advection-Dispersion Equation
83(4)
Depth-Moments for Stochastic-Convective Models
87(1)
Transfer Functions for Layered Soils
88(3)
Stochastic Stream Tube Models
91(2)
A Stochastic Stream Tube Model for Contaminant Dissolution and Transport with Degradation
93(12)
Local Model
93(12)
Temporal Moment Analysis for Solute Transport in Porous Media
105(38)
Model Descriptions and Governing Differential Equations
106(3)
Temporal Moment Definitions
109(2)
Aris's Method of Moment Analysis
111(5)
Computing Time Moments from Experimental Data
116(7)
Experimental Data
116(1)
Computing Moments from Observed Data
117(2)
Estimation Errors
119(4)
Applications of the Method of Moments
123(11)
Estimating Parameters of the Transport Equation
123(5)
Effective Parameters
128(1)
Nonequilibrium Indices
129(5)
Summary
134(1)
Appendix: Sample BTC Data
135(8)
Spatial Moment Analysis for Solute Transport in Porous Media
143(12)
Introduction
143(2)
Spatial Moments
145(1)
Spatial Moments to Describe Solute Plume Behavior
146(3)
Spatial Moments for the PNE Model
149(2)
Spatial Moments for First-Order Rate Model
151(4)
Moment Analysis for Volatile Compounds
155(28)
Introduction
155(2)
Immobile Vapor Phase Model
157(5)
Description of Loss Fractions
162(1)
Effective Parameter Definitions
163(10)
Mobile Vapor Phase Model
173(8)
Spatial Moments for Mobile Vapor Phase Model
181(2)
Moment Generating Differential Equations
183(24)
Definitions of MGDEs
183(2)
Temporal MGDEs for Solute Transport in Soil
185(4)
Analysis with Degradation
186(1)
Analysis without Degradation
187(2)
Spatial MGDEs for PNE Model of Solute Transport in Soil
189(10)
Zeroth Moment
192(5)
First Moment
197(1)
Second Moment
198(1)
Spatial Moments for a Two-Layer Aquifer
199(4)
Perfectly Stratified Aquifer with Velocity Variation
203(4)
Momemt Analysis for Compounds Undergoing Sequential Decay Chain Reactions
207(16)
Introduction
207(1)
Governing Differential Equations
207(2)
Laplace Transforms
209(1)
Temporal Moment Analysis
210(5)
Temporal Moments for Advective Transport
215(2)
Spatial Moments for Compounds Undergoing Sequential First-Order Decay Chain
217(6)
Applications of Moments in Interval Computing Methods
223(24)
General Remarks
223(1)
Interval Arithmetic Operations
224(1)
Interval Distribution Functions
225(2)
Defining Moments from Interval Distribution Functions
227(1)
Application to a Remediation Example
227(10)
First-Order Degradation Model
228(1)
Statistical Distributions of Degradation Rates and Initial Concentrations
229(2)
Field-Scale Models
231(2)
Results and Discussion
233(4)
Application to Solute Transport Experiment
237(10)
Description of the Solute Transport Experiment
238(1)
Advective Solute Transport in Vadose Zone
238(2)
Field-Scale Model using Interval Computing Method
240(1)
Stochastic Advective Solute Transport
241(3)
Results and Discussion
244(3)
Moment Analysis for Subsurface Storm Flow
247(18)
Introduction
247(2)
Moments For Linearized Subsurface Drainage with No Recharge
249(3)
Subsurface Drainage with Lateral Inflow
252(4)
Transfer Function Approach for Subsurface Drainage
256(9)
Theoretical Development
256(4)
Moments and Experimental Results
260(5)
Constructing Concentration Distributions from Moments
265(12)
Problem Definition
265(2)
Density Matching Methods
267(1)
Polynomial Summation Methods
267(4)
Gram-Charlier and Edgeworth Series Approach
267(3)
Expansion Methods Based on other Polynomials
270(1)
Maximum Entropy (Maxent) Method
271(3)
Geometrical Moments
273(1)
Example Calculations
274(3)
References 277(12)
Index 289