Muutke küpsiste eelistusi

Monte Carlo Methods for Partial Differential Equations With Applications to Electronic Design Automation 2023 ed. [Kõva köide]

  • Formaat: Hardback, 253 pages, kõrgus x laius: 235x155 mm, kaal: 619 g, 91 Illustrations, color; 34 Illustrations, black and white; XIV, 253 p. 125 illus., 91 illus. in color., 1 Hardback
  • Ilmumisaeg: 03-Sep-2022
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9811932492
  • ISBN-13: 9789811932496
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 253 pages, kõrgus x laius: 235x155 mm, kaal: 619 g, 91 Illustrations, color; 34 Illustrations, black and white; XIV, 253 p. 125 illus., 91 illus. in color., 1 Hardback
  • Ilmumisaeg: 03-Sep-2022
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9811932492
  • ISBN-13: 9789811932496

The Monte Carlo method is one of the top 10 algorithms in the 20th century. This book is focusing on the Monte Carlo method for solving deterministic partial differential equations (PDEs), especially its application to electronic design automation (EDA) problems. Compared with the traditional method, the Monte Carlo method is more efficient when point values or linear functional of the solution are needed, and has the advantages on scalability, parallelism, and stability of accuracy. This book presents a systematic introduction to the Monte Carlo method for solving major kinds of PDEs, and the detailed explanation of relevant techniques for EDA problems especially the cutting-edge algorithms of random walk based capacitance extraction. It includes about 100 figures and 50 tables, and brings the reader a close look to the newest research results and the sophisticated algorithmic skills in Monte Carlo simulation software.

Introduction.- Monte Carlo Method for Solving PDE.- A Monte Carlo
Algorithm for the Telegraphers Equations.- Basics of Floating Random Walk
Method for Capacitance Extraction.- Pre-Characterization Techniques for FRW
Based Capacitance Extraction.- Fast FRW Solver for 3-D Structures with
Cylindrical Inter-Tier-Vias.- Fast FRW Solver for Structures with
Non-Manhattan Conductors.- Technique for Capacitance Simulation with General
Floating Metals.- Markov-Chain Random Walk and Macromodel-Aware Capacitance
Extraction.- GPU-Friendly FRW Algorithm for Capacitance Extraction.-
Distributed Parallel FRW Algorithm for Capacitance Simulation.- A Hybrid
Random Walk Algorithm for 3-D Thermal Analysis.
Dr. Wenjian Yu is a  Full Professor with the Department of Computer Science and Technology, Tsinghua University, Beijing, China. Dr. Yu's current research interests include physical-level modelling and simulation techniques for IC design, high-performance numerical algorithms, and Big-Data analytics and machine learning. Dr. Yu has authored/coauthored two books and about 200 papers in refereed journals and conferences. He was the recipient of the distinguished Ph.D. Award from Tsinghua University in 2003, the Excellent Young Scientist Award from the National Science Foundation of China in 2014. He received the Best Paper Awards of DATE'2016, ACES'2017 and ICTAI'2019, and 6 Best Paper Award Nominations in ICCAD, DATE, ASPDAC, ISQED and GLSVLSI.