Muutke küpsiste eelistusi

Mounting Optics in Optical Instruments 2nd Revised edition [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 750 pages, illustrations
  • Sari: Press Monographs
  • Ilmumisaeg: 02-Sep-2008
  • Kirjastus: SPIE Press
  • ISBN-10: 0819471291
  • ISBN-13: 9780819471291
Teised raamatud teemal:
  • Formaat: Multiple-component retail product, 750 pages, illustrations
  • Sari: Press Monographs
  • Ilmumisaeg: 02-Sep-2008
  • Kirjastus: SPIE Press
  • ISBN-10: 0819471291
  • ISBN-13: 9780819471291
Teised raamatud teemal:
Yoder, who has 57 years of experience in developing optical instruments for military, aerospace, medical and industrial applications, has expanded the second edition of this textbook to include new information in optomechanical engineering technologies and new methods used to provide interfaces for the mechanical parts in optical instruments. The author thoroughly explains the optical properties of lenses, windows, filters, domes, prisms and mirrors used to build these instruments, and explores new technologies involving metallic mirrors, lens centering, elastomeric mounting and mounting stress estimation techniques. Written for optical engineers and technicians, this book also examines the effects of temperature changes on these precision parts. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)
Preface to 2nd Edition xv
Preface to 1st Edition xix
Terms and Symbols xxi
Introduction
1(42)
Applications of Optical Components
1(2)
Key Environmental Considerations
3(11)
Temperature
3(2)
Pressure
5(1)
Vibration
6(1)
Single frequency periodic
6(2)
Random frequencies
8(2)
Shock
10(1)
Moisture, contamination, and corrosion
11(2)
High-energy radiation
13(1)
Laser damage to optics
13(1)
Abrasion and erosion
14(1)
Fungus
14(1)
Extreme Service Environments
14(2)
Near Earth's surface
14(1)
In outer space
15(1)
Environmental Testing
16(2)
Guidelines
17(1)
Methods
17(1)
Key Material Properties
18(12)
Optical glasses
19(7)
Optical plastics
26(1)
Optical crystals
27(1)
Mirror materials
27(1)
Materials for mechanical components
27(2)
Adhesives and sealants
29(1)
Dimensional Instability
30(1)
Tolerancing Optical and Mechanical Components
30(3)
Cost Aspects of Tightened Tolerances on Optics
33(3)
Manufacturing Optical and Mechanical Components
36(4)
References
40(3)
The Optic-to-Mount Interface
43(22)
Mechanical Constraints
43(18)
General considerations
43(1)
Centering a lens element
44(10)
Lens interfaces
54(1)
The rim contact interface
54(1)
The surface contact interface
55(2)
Contacting flat bevels
57(1)
Prism interfaces
57(3)
Mirror interfaces
60(1)
Interfaces with other optical components
61(1)
Consequences of Mounting Forces
61(1)
Sealing Considerations
61(3)
References
64(1)
Mounting Individual Lenses
65(62)
Preload Requirements
65(3)
Weight and Center of Gravity Calculations
68(6)
Spring Mountings for Lenses and Filters
74(1)
Burnished Cell Mountings
75(2)
Snap and ``Interference Fit'' Rings
77(7)
Retaining Ring Constraints
84(8)
Threaded retaining rings
84(4)
Clamping (flange) ring
88(4)
Constraining the Lens with Multiple Spring Clips
92(3)
Geometry of the Lens-to-Mount Interface
95(11)
The sharp-corner interface
95(2)
The tangential (conical) interface
97(2)
The toroidal interface
99(3)
The spherical interface
102(1)
Interfaces with bevels on optics
103(3)
Elastomeric Mountings
106(9)
Flexure Mountings for Lenses
115(5)
Mounting Plastic Lenses
120(3)
References
123(4)
Multiple-Component Lens Assemblies
127(52)
Spacer Design and Manufacture
127(7)
Drop-In Assembly
134(1)
Lathe Assembly
135(2)
Elastomeric Mountings
137(4)
Poker-Chip Assembly
141(1)
Assemblies Designed for High-Shock Environments
142(3)
Photographic Objective Lenses
145(7)
Modular Construction and Assembly
152(4)
Catoptric and Catadioptric Assemblies
156(4)
Assemblies with Plastic Housings and Lenses
160(5)
Internal Mechanisms
165(11)
Focus mechanisms
165(8)
Zoom mechanisms
173(3)
Sealing and Purging Lens Assemblies
176(1)
References
177(2)
Mounting Optical Windows, Filters, Shells, and Domes
179(26)
Simple Window Mountings
179(4)
Mounting ``Special'' Windows
183(3)
Conformal Windows
186(4)
Windows Subject to Pressure Differential
190(7)
Survival
190(5)
Optical effects
195(2)
Filter Mountings
197(2)
Mounting Shells and Domes
199(4)
References
203(2)
Prism Design
205(48)
Principal Functions
205(1)
Geometric Considerations
205(9)
Refraction and reflection
205(6)
Total internal reflection
211(3)
Aberration Contributions of Prisms
214(1)
Typical Prism Configurations
214(37)
Right-angle prism
215(1)
Beamsplitter (or beamcombiner) cube prism
215(1)
Amici prism
216(1)
Porro prism
216(1)
Porro erecting system
217(3)
Abbe version of the Porro prism
220(1)
Abbe erecting system
221(1)
Rhomboid prism
221(1)
Dove prism
222(1)
Double Dove prism
223(2)
Reversion, Abbe Type A, and Abbe Type B prisms
225(2)
Pechanprism
227(1)
Penta prism
227(1)
Roof penta prism
228(1)
Amici/penta erecting system
228(2)
Delta prism
230(2)
Schmidt roof prism
232(2)
The 45-deg Bauernfeind prism
234(1)
Frankford Arsenal prisms nos. 1 and 2
234(2)
Leman prism
236(1)
Internally-reflecting axicon prism
237(1)
Cube corner prism
238(1)
An ocular prism for a coincidence rangefinder
239(3)
Biocular prism system
242(1)
Dispersing prisms
242(3)
Thin wedge prisms
245(1)
Risley wedge system
246(2)
Sliding wedge
248(1)
Focus-adjusting wedge system
248(2)
Anamorphic prism systems
250(1)
References
251(2)
Techniques for Mounting Prisms
253(36)
Kinematic Mountings
253(1)
Semikinematic Mountings
254(11)
The Use of Pads on Cantilevered and Straddling Springs
265(5)
Mechanically Clamped Nonkinematic Mountings
270(4)
Bonded Prism Mountings
274(11)
General considerations
274(2)
Examples of bonded prisms
276(3)
Double-sided prism support techniques
279(6)
Flexure Mountings for Prisms
285(2)
References
287(2)
Mirror Design
289(64)
General Considerations
289(1)
Image Orientation
290(4)
First- and Second-Surface Mirrors
294(2)
Ghost Image Formation with Second-Surface Mirrors
296(5)
Approximation of Mirror Aperture
301(2)
Weight Reduction Techniques
303(31)
Contoured-back configurations
304(10)
Cast ribbed substrate configurations
314(1)
Built-up structural configurations
315(3)
Egg crate construction
318(1)
Monolithic construction
319(4)
Frit-bonded construction
323(1)
Hextek construction
323(2)
Machined core construction
325(3)
Foam core construction
328(4)
Internally machined mirror construction
332(2)
Thin Facesheet Configurations
334(2)
Metallic Mirrors
336(7)
Metallic Foam Core Mirrors
343(3)
Pellicles
346(2)
References
348(5)
Techniques for Mounting Smaller Nonmetallic Mirrors
353(46)
Mechanically Clamped Mirror Mountings
353(13)
Bonded Mirror Mountings
366(5)
Compound Mirror Mountings
371(9)
Flexure Mountings for Smaller Mirrors
380(8)
Central and Zonal Mountings
388(2)
Gravitational Effects on Smaller Mirrors
390(6)
References
396(3)
Techniques for Mounting Metallic Mirrors
399(34)
Single Point Diamond Turning of Metallic Mirrors
399(13)
Integral Mounting Provisions
412(1)
Flexure Mountings for Metallic Mirrors
413(9)
Plating of Metal Mirrors
422(2)
Interfacing Metallic Mirrors for Assembly and Alignment
424(5)
References
429(4)
Techniques for Mounting Larger Nonmetallic Mirrors
433(78)
Mounts for Axis-Horizontal Applications
433(19)
V-mounts
434(7)
Multipoint edge supports
441(1)
The ``ideal'' radial mount
442(3)
Strap and roller chain supports
445(4)
Comparison of dynamic relaxation and FEA methods of analysis
449(2)
Mercury tube supports
451(1)
Mounts for Axis Vertical Applications
452(13)
General considerations
452(1)
Air bag axial supports
453(4)
Metrology mounts
457(8)
Mounts for Axis Variable Applications
465(35)
Counterweighted lever-type mountings
465(6)
Hindle mounts for large mirrors
471(12)
Pneumatic and hydraulic mountings
483(17)
Supports for Large, Space-borne Mirrors
500(6)
The Hubble Space Telescope
500(3)
The Chandra X-Ray Telescope
503(3)
References
506(5)
Aligning Refracting, Reflecting and Catadioptric Systems
511(42)
Aligning the Individual Lens
511(13)
Simple techniques for aligning a lens
512(2)
Rotating spindle techniques
514(6)
Techniques using a ``Point Source Microscope''
520(4)
Aligning Multiple Lens Assemblies
524(21)
Using an alignment telescope
525(2)
Aligning microscope objectives
527(6)
Aligning multiple lenses on a precision spindle
533(2)
Aberration compensation at final assembly
535(8)
Selecting aberration compensators
543(2)
Aligning Reflecting Systems
545(5)
Aligning a simple Newtonian telescope
545(2)
Aligning a simple Cassegrain telescope
547(2)
Aligning a simple Schmidt camera
549(1)
References
550(3)
Estimation of Mounting Stresses
553(32)
General Considerations
553(1)
Statistical Prediction of Optic Failure
554(5)
Rule-of-Thumb Stress Tolerances
559(3)
Stress Generation at Point, Line, and Area Contacts
562(8)
Peak Contact Stress in an Annular Interface
570(10)
Stress with a sharp corner interface
571(1)
Stress with a tangential interface
572(2)
Stress with a toroidal interface
574(2)
Stress with a spherical interface
576(1)
Stress with a flat bevel interface
576(1)
Parametric comparisons of interface types
576(4)
Bending Effects in Asymmetrically Clamped Optics
580(3)
Bending stress in the optic
580(2)
Change in surface sagittal depth of a bent optic
582(1)
References
583(2)
Effects of Temperature Changes
585(56)
Athermalization Techniques for Reflective Systems
585(4)
Same material designs
585(1)
Metering rods and trusses
586(3)
Athermalization Techniques for Refractive Systems
589(13)
Passive athermalization
591(7)
Active compensation
598(4)
Effects of Temperature Change on Axial Preload
602(15)
Axial dimension changes
602(3)
Quantifying K3
605(1)
Considering bulk effects only
606(3)
Considering other contributing factors
609(3)
Advantages of athermalization and compliance
612(5)
Radial Effects in Rim Contact Mountings
617(6)
Radial stress in the optic
618(2)
Tangential (hoop) stress in the mount wall
620(1)
Growth of radial clearance at high temperatures
621(1)
Adding radial compliance to maintain lens centration
622(1)
Effects of Temperature Gradients
623(7)
Radial temperature gradients
627(2)
Axial temperature gradients
629(1)
Temperature Change-Induced Stresses in Bonded Optics
630(9)
References
639(2)
Hardware Examples
641(68)
Infrared Sensor Lens Assembly
641(1)
A Family of Commercial Mid-Infrared Lenses
642(1)
Using SPDT to Mount and Align Poker Chip Subassemblies
643(6)
A Dual Field IR Tracker Assembly
649(2)
A Dual Field IR Camera Lens Assembly
651(2)
A Passively Stabilized 10:1 Zoom Lens Objective
653(1)
A 90-mm, f/2 Projection Lens Assembly
653(2)
A Solid Catadioptric Lens Assembly
655(2)
An All-Aluminum Catadioptric Lens Assembly
657(1)
A Catadioptric Star Mapping Objective Assembly
658(4)
A 150-in., f/10 Catadioptric Camera Objective
662(4)
The Camera Assembly for the DEIMOS Spectrograph
666(2)
Mountings for Prisms in a Military Articulated Telescope
668(5)
A Modular Porro Prism Erecting System for a Binocular
673(3)
Mounting Large Dispersing Prisms in a Spectrograph Imager
676(5)
Mounting Gratings in the FUSE Spectrograph
681(4)
The Spitzer Space Telescope
685(4)
A Modular Dual Collimator Assembly
689(5)
Lens Mountings for the JWST's NIRCam
694(5)
Concept for axial constraint of the LIF lens
695(1)
Concept for radial constraint of the LIF lens
695(1)
Analytical and experimental verification of the Prototype lens mount
696(1)
Design and initial testing of flight hardware
697(2)
Long-term stability tests
699(1)
Further developments
699(1)
A Double-Arch Mirror Featuring Silicon-Foam-Core-Technology
699(5)
References
704(5)
Appendix A. Unit Conversion Factors
709(2)
Appendix B. Mechanical Properties of Materials
711(26)
Table B1 Optomechanical properties of 50 Schott optical glasses
712(3)
Table B2 Optomechanical properties of radiation resistant Schott glasses
715(1)
Table B3 Selected optomechanical characteristics of optical plastics
716(1)
Table B4 Optomechanical properties of selected alkali halides and alkaline earth halides
717(2)
Table B5 Optomechanical properties of selected IR-transmitting glasses and other oxides
719(1)
Table B6 Optomechanical properties of diamond and selected IR-transmitting semiconductor materials
720(1)
Table B7 Mechanical properties of selected IR-transmitting chalcogenide materials
721(1)
Table B8a Mechanical properties of selected nonmetallic mirror substrate materials
722(1)
Table B8b Mechanical properties of selected metallic and composite mirror substrate materials
723(1)
Table B9 Comparison of material figures of merit for mirror design
724(1)
Table B10a Characteristics of aluminum alloys used in mirrors
725(1)
Table B10b Common temper conditions for aluminum alloys
726(1)
Table B10c Characteristics of aluminum matrix composites
726(1)
Table B10d Beryllium grades and some of their properties
727(1)
Table B10e Characteristics of major silicon carbide types
727(1)
Table B11 Comparison of metal matrix and polymer matrix composites
728(1)
Table B12 Mechanical properties of selected metals used for mechanical parts in optical instruments
729(2)
Table B13 Typical characteristics of a generic optical cement
731(1)
Table B14 Typical characteristics of representative structural adhesives
732(2)
Table B15 Typical physical characteristics of representative elastomeric sealants
734(2)
Table B16 Fracture strength SF of infrared materials
736(1)
Appendix C. Torque-Preload Relationship for a Threaded Retaining Ring
737(4)
Appendix D. Summary of Methods for Testing Optical Components and Optical Instruments under Adverse Environmental Conditions
741(6)
Index 747