Muutke küpsiste eelistusi

Multigroup Equations For The Description Of The Particle Transport In Semiconductors [Kõva köide]

(Graz Univ Of Tech, Austria)
Teised raamatud teemal:
Teised raamatud teemal:
Deterministic simulation of the particle transport in semiconductor devices is an interesting alternative to the common Monte Carlo approach. In this book, a state-of-the-art technique called the multigroup approach is presented and applied to a variety of transport problems in bulk semiconductors and semiconductor devices. High-field effects as well as hot-phonon phenomena in polar semiconductors are studied in detail. The mathematical properties of the presented numerical method are studied, and the method is applied to simulating the transport of a two-dimensional electron gas formed at a semiconductor heterostructure. Concerning semiconductor device simulation, several diodes and transistors fabricated of silicon and gallium arsenide are investigated. For all of these simulations, the numerical techniques employed are discussed in detail.This unique study of the application of direct methods for semiconductor device simulation provides the interested reader with an indispensable reference on this growing research area.
Preface vii
1. Introduction
1(4)
2. The Bloch-Boltzmann-Peierls Equations
5(32)
2.1 Introduction
5(1)
2.2 Electrons in Semiconductors
5(4)
2.3 Phonons in Semiconductors
9(2)
2.4 Scattering Mechanisms
11(13)
2.4.1 General Theory of Scattering
12(2)
2.4.2 Phonon Scattering
14(8)
2.4.2.1 Non-polar Phonon Scattering
15(4)
2.4.2.2 Polar Phonon Scattering
19(3)
2.4.3 Ionized Impurity Scattering
22(2)
2.5 Semiclassical Dynamics of Electrons
24(2)
2.6 The Bloch-Boltzmann-Peierls Equations
26(6)
2.7 Mathematical Properties of the BBP Equations
32(5)
3. Multigroup Model Equations for Polar Semiconductors
37(24)
3.1 Introduction
37(1)
3.2 Multigroup Equations to the Bloch-Boltzmann-Peierls Equations
38(15)
3.2.1 The Electron Boltzmann Equation
40(5)
3.2.2 The LO Phonon Boltzmann Equation
45(2)
3.2.3 The Coupling POP Interaction Term
47(4)
3.2.4 The Evaluation of the Collision Coefficients
51(2)
3.3 Conservation Laws
53(8)
4. Particle Transport in Indium Phosphide
61(16)
4.1 Introduction
61(1)
4.2 Two-valley Model
61(10)
4.2.1 Validation of the Method
64(2)
4.2.2 Electron Distribution Function
66(2)
4.2.3 Phonon Distribution Function
68(1)
4.2.4 Transport Parameters
69(2)
4.3 Three-valley Model
71(6)
5. Particle Transport in Gallium Arsenide
77(10)
5.1 Introduction
77(1)
5.2 Transport in a Time-dependent Electric Field
78(4)
5.3 The Stationary-state Electron Distribution
82(5)
6. Multigroup Equations for Degenerated Carrier Gases
87(20)
6.1 Introduction
87(1)
6.2 The Bloch-Boltzmann-Peierls Equations
88(1)
6.3 The Multigroup Model Equations
89(4)
6.4 Mathematical Aspects of the Multigroup Model Equations
93(7)
6.4.1 Boundedness of the Solution
93(2)
6.4.2 Conservation Laws
95(1)
6.4.3 H-theorem
96(2)
6.4.4 Equilibrium Solution
98(2)
6.5 Numerical Results
100(7)
7. The Two-dimensional Electron Gas
107(40)
7.1 Introduction
107(1)
7.2 General Theory of Transport in Confined Systems
107(17)
7.2.1 Dispersion Laws
107(4)
7.2.2 Scattering Mechanisms
111(9)
7.2.2.1 Acoustic Deformation Potential Scattering
112(2)
7.2.2.2 Piezoelectric Scattering
114(1)
7.2.2.3 Polar Optical Phonon Scattering
115(3)
7.2.2.4 Screening Effects
118(2)
7.2.3 BBP Equations for 2D Systems
120(4)
7.3 Multigroup Equations to the 2D-BBP Equations
124(8)
7.4 Transport in AlxGa1-xN/GaN
132(15)
7.4.1 Self-consistent Solution for Confining Potential
135(4)
7.4.2 Transport Properties
139(6)
7.4.3 Distribution Functions
145(2)
8. The Multigroup-WENO Solver for Semiconductor Device Simulation
147(8)
8.1 Introduction
147(1)
8.2 The Boltzmann-Poisson System
148(2)
8.3 The Multigroup-WENO Scheme
150(5)
9. Simulation of Silicon Devices
155(36)
9.1 Introduction
155(2)
9.2 Transport in Bulk Silicon
157(1)
9.3 The Silicon n+ — n — n+ Diode
158(4)
9.4 The Si-MESFET
162(10)
9.5 The Si-MOSFET
172(19)
10. Simulation of Gallium Arsenide Devices 191(22)
10.1 Introduction
191(2)
10.2 Bulk GaAs
193(2)
10.3 The GaAs n+ — ni — n+ Diode
195(5)
10.4 The GaAs-MESFET
200(13)
11. Conclusion 213(4)
Bibliography 217(6)
Related Publications of the Author 223(2)
Index 225