Muutke küpsiste eelistusi

Multiphysics in Nanostructures 1st ed. 2017 [Kõva köide]

  • Formaat: Hardback, 214 pages, kõrgus x laius: 235x155 mm, kaal: 4616 g, 91 Illustrations, color; 25 Illustrations, black and white; X, 214 p. 116 illus., 91 illus. in color., 1 Hardback
  • Sari: Nanostructure Science and Technology
  • Ilmumisaeg: 24-Jul-2017
  • Kirjastus: Springer Verlag, Japan
  • ISBN-10: 443156571X
  • ISBN-13: 9784431565710
Teised raamatud teemal:
  • Kõva köide
  • Hind: 122,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 144,49 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 214 pages, kõrgus x laius: 235x155 mm, kaal: 4616 g, 91 Illustrations, color; 25 Illustrations, black and white; X, 214 p. 116 illus., 91 illus. in color., 1 Hardback
  • Sari: Nanostructure Science and Technology
  • Ilmumisaeg: 24-Jul-2017
  • Kirjastus: Springer Verlag, Japan
  • ISBN-10: 443156571X
  • ISBN-13: 9784431565710
Teised raamatud teemal:

This is the first book to systematically review and summarize the recent rapid advances and varied results of multiphysics in nanoscale materials including elastic strain engineering. This book comprises topics on remarkable properties of multiphysics in low-dimensional nanoscale components from first-principles density-functional theory (or tight binding) calculations, which are essential for the nonlinear multiphysics couplings due to quantum mechanical effects. This volume provides a clear point of view and insight into the varied work done in diverse fields and disciplines and promotes a fundamental to state-of-the-art understanding of properties of multiphysics. Because the novelty and complexity of mechanical and multiphysical properties of low-dimensional nanostructures originate from combinations of outer shapes (e.g., films, wires, tubes, and dots) and inner understructures (e.g., grain boundaries, domain walls, vacancies, and impurities), the nanostructures are classified into fundamental elements, and the properties of each element and their interplay are reviewed for systematic, in-depth understanding. This book points out a new direction for multiphysics in nanostructures, which opens the door both to exploiting and to designing novel functionalities at the nanoscale. Readers will be interested in this rapidly expanding multidisciplinary work and will be motivated to enter this promising research area.

1 Introduction
1(4)
2 Methodology of Quantum Mechanics/Atomic Simulations
5(30)
2.1 Method for Electronic Structure Calculation
5(4)
2.1.1 Fundamental Approximations for Electronic Structure Calculation
6(1)
2.1.2 Hartree-Fock Method
6(2)
2.1.3 Density-functional Theory
8(1)
2.2 First-Principles Calculation with Plane Wave Basis Set
9(19)
2.2.1 Kohn-Sham Equation
9(1)
2.2.2 Local Density Approximation
10(3)
2.2.3 Generalized Gradient Approximation
13(1)
2.2.4 Pseudopotential Method and Norm-Conserving Pseudopotential
14(1)
2.2.5 Hamiltonian in NCPP
15(3)
2.2.6 Ultrasoft Pseudopotential Method
18(2)
2.2.7 Projector-augmented Wave Method
20(2)
2.2.8 All-Electron Method
22(1)
2.2.9 Beyond LDA and GGA
23(1)
2.2.10 Evaluation of Physical Quantities
24(4)
2.3 Semi-empirical and Empirical Theories for Nanostructure Properties
28(4)
2.3.1 Semi-empirical Calculation of Electronic State
28(3)
2.3.2 Atomistic Modeling Using Empirical Interatomic Potential
31(1)
2.4 Conclusion
32(3)
References
33(2)
3 Ideal Strength in Low-Dimensional Nanostructures
35(32)
3.1 Mechanical Properties of Nanostructures
35(5)
3.1.1 Ideal Strength
35(4)
3.1.2 Elastic Constants
39(1)
3.2 Ideal Understructure
40(5)
3.2.1 Zero-Dimensional Understructure
40(1)
3.2.2 One-Dimensional Understructure
41(2)
3.2.3 Two-Dimensional Understructure
43(1)
3.2.4 Understructure of Two or More Elements
44(1)
3.3 Nanostructures with Ideal Shape
45(19)
3.3.1 Two-Dimensional Nanostructures
46(10)
3.3.2 One-Dimensional Nanostructures
56(7)
3.3.3 Zero-Dimensional Nanostructures
63(1)
3.4 Conclusion
64(3)
References
65(2)
4 Strain Engineering on Nanosemiconductors
67(30)
4.1 Strain Engineering on Semiconductors
67(1)
4.2 Bulk Semiconductors
68(6)
4.2.1 Bulk Semiconductors Subjected to External Strain
68(3)
4.2.2 Bulk Semiconductors with Internal Strain Fields
71(3)
4.3 Nanosemiconductors
74(20)
4.3.1 Two-Dimensional Nanosemiconductors
74(6)
4.3.2 One-Dimensional Nanosemiconductors
80(10)
4.3.3 Zero-Dimensional Nanosemiconductors
90(4)
4.4 Conclusion
94(3)
References
94(3)
5 Ferroelectric Nanostructures
97(44)
5.1 Ferroelectricity in Bulk
97(6)
5.1.1 Ferroelectric Instability and Its Response to Strain
97(1)
5.1.2 Domain Structure and Domain Switching
98(4)
5.1.3 Effect of Defects
102(1)
5.2 Thin Film and Surface Property: Two-Dimensional Structure
103(17)
5.2.1 Ferroelectric Surface Structure
103(5)
5.2.2 Correlation Between Surface Structure and Internal Geometry
108(6)
5.2.3 Ferroelectric Thin-Film Capacitor
114(6)
5.3 Nanowire and Nanotube: One-Dimensional Structure
120(14)
5.3.1 FE Structure in Perovskite Nanowire
120(4)
5.3.2 FE Perovskite Nanotube
124(4)
5.3.3 Strain Effect in Nanowire and Nanotube
128(6)
5.4 Nanodot: Zero-Dimensional Structure
134(3)
5.5 Conclusion
137(4)
References
137(4)
6 Magnetism in Nanostructures
141(24)
6.1 Magnetism in Bulk
141(5)
6.1.1 Magnetism and Its Response to Strain
141(5)
6.2 Thin Film and Monolayer: Two-Dimensional Structure
146(8)
6.2.1 Thin Films and Surface Properties
146(3)
6.2.2 Monolayer
149(5)
6.3 Nanowire, Nanotube, and Atomic Chain: One-Dimensional Structure
154(8)
6.3.1 Nanowires
154(1)
6.3.2 Nanotubes
155(4)
6.3.3 Atomic Chains
159(3)
6.4 Atomic Cluster: Zero-Dimensional Structure
162(1)
6.5 Conclusion
163(2)
References
163(2)
7 Multiferroic Nanostructures
165(28)
7.1 Multiferroicity in Bulk
165(7)
7.1.1 Multiferroic Properties and Response to Strain
165(2)
7.1.2 Multiferroic Domains and Domain Walls
167(2)
7.1.3 Atomic Defects
169(3)
7.2 Multiferroicity in Nanostructures
172(9)
7.2.1 Nanofilms and Surface Properties: Two-Dimensional Structure
172(5)
7.2.2 Nanowires: One-Dimensional Structure
177(4)
7.3 Extrinsic (Defect-Induced) Multiferroics in Atomic Scales
181(9)
7.3.1 Multiferroic Grain Boundaries with Oxygen Vacancies
182(3)
7.3.2 Multiferroic Vacancies at Ferroelectric Oxide Surfaces
185(3)
7.3.3 Strain-Induced Multiferroic Transitions
188(2)
7.4 Conclusion
190(3)
References
190(3)
8 Ferroic Nanometamaterials and Composites
193
8.1 Ferroic Nanometamaterials from Phase-Field Modeling
193(8)
8.1.1 Phase-Field Modeling of Ferroelectrics
194(2)
8.1.2 Phase-field Modeling of Ferromagnetic Systems
196(3)
8.1.3 Phase-field Modeling of Multiferroic Composites
199(2)
8.2 Nanometamaterials of Ferroelectrics
201(9)
8.2.1 Unusual Domain Patterning in Nanometamaterials
201(3)
8.2.2 Tunable Polar and Toroidal Electromechanical Properties
204(2)
8.2.3 Multiple Hysteresis Behaviors
206(4)
8.3 Multiferroic Nanocomposites
210(2)
8.4 Conclusion
212
References
213