Muutke küpsiste eelistusi

Nano-Structured Photovoltaics: Solar Cells in the Nanotechnology Era [Kõva köide]

(CSIR-Central Electronics Engineering Research Institute, India)
  • Formaat: Hardback, 448 pages, kõrgus x laius: 254x178 mm, kaal: 453 g, 13 Tables, black and white; 172 Line drawings, black and white; 4 Halftones, black and white; 176 Illustrations, black and white
  • Ilmumisaeg: 20-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-10: 1032075562
  • ISBN-13: 9781032075563
  • Formaat: Hardback, 448 pages, kõrgus x laius: 254x178 mm, kaal: 453 g, 13 Tables, black and white; 172 Line drawings, black and white; 4 Halftones, black and white; 176 Illustrations, black and white
  • Ilmumisaeg: 20-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-10: 1032075562
  • ISBN-13: 9781032075563
Presenting a comprehensive overview of a rapidly burgeoning field blending solar cell technology with nanotechnology, the book covers topics such as solar cell basics, nanotechnology fundamentals, nanocrystalline silicon-based solar cells, nanotextured-surface solar cells, plasmon-enhanced solar cells, optically-improved nanoengineered solar cells, dye-sensitized solar cells, 2D perovskite and 2D/3D multidimensional perovskite solar cells, carbonaceous nanomaterial-based solar cells, quantum well solar cells, nanowire solar cells and quantum dot solar cells. The book provides an in-depth and lucid presentation of the subject matter in an elegant, easy-to-understand writing style, starting from basic knowledge through principles of operation and fabrication of devices to advanced research levels encompassing the recent breakthroughs and cutting-edge innovations. It will be useful for graduate and PhD students, scientists, and engineers.

Key features:

* Builds an integrated perspective of photovoltaics by highlighting the essential role of nanotechnology in each type of solar cell.

* Performs simplified mathematical analysis of operational mechanisms of nanostructured solar cells supplemented with solved examples.

* Enhances learning with clear explanations of technological advances and illustrative diagrams without sacrificing scientific rigor.
Preface xxiii
Acknowledgments xxvii
About the Author xxix
About the Book xxxi
Acronyms and Abbreviations xxxiii
Chemical Symbols xxxix
Mathematical Symbols xliii
Part I Preliminaries and Nanocrystalline Silicon Photovoltaics
Chapter 1 Solar Cell Basics
3(26)
1.1 Progression from Fossil Fuels to Renewable Energy Sources
3(2)
1.1.1 Fossil Fuels, the Lifeblood of Modern Civilization
3(1)
1.1.2 Evils and Limitations of Fossil Fuels
3(1)
1.1.2.1 Land and Habitat Destruction
3(1)
1.1.2.2 Greenhouse Effect
3(1)
1.1.2.3 Global Warming
3(1)
1.1.2.4 Depletion of Fossil Fuels
3(1)
1.1.3 Promises of Solar Energy for Sustainable Development
4(1)
1.2 Solar Power Generating System
5(1)
1.2.1 Photovoltaic Power System
5(1)
1.2.2 Concentrated Power System
5(1)
1.3 Photovoltaic Power System
5(1)
1.3.1 Off-Grid (Stand-Alone or Grid Fallback) Solar Power System
5(1)
1.3.2 Grid-Tie Solar Power System
5(1)
1.4 Construction and Working of a Solar Cell
6(2)
1.5 Optoelectrical Characteristics and Parameters of a Solar Cell
8(4)
1.5.1 Short-Circuit Current (ISC)
8(1)
1.5.2 Open-Circuit Voltage (VOC)
8(1)
1.5.3 Maximum Power (PM) and Maximum Power Point (PMPP)
9(2)
1.5.4 Fill Factor
11(1)
1.5.5 Power Conversion Efficiency
11(1)
1.5.6 AM0 and AM1.5 Solar Spectra
11(1)
1.5.7 Shockley-Queisser Detailed Balance Limit of Efficiency of P-N Junction Solar Cell
12(1)
1.6 Solar Cell Generations
12(2)
1.6.1 First Generation
12(1)
1.6.2 Second Generation
12(2)
1.6.3 Third Generation
14(1)
1.7 Solar Cell Technologies
14(10)
1.7.1 Monocrystalline Silicon Solar Cell
14(1)
1.7.2 Gallium Arsenide Solar Cell
15(1)
1.7.3 Amorphous Silicon Solar Cell
16(1)
1.7.4 Silicon Heterojunction Solar Cell
16(1)
1.7.5 Cadmium Telluride Solar Cell
17(1)
1.7.6 Cadmium Indium Gallium Selenide (CIGSe) Solar Cell
18(2)
1.7.7 Perovskite Solar Cell
20(2)
1.7.8 Organic Solar Cell
22(2)
1.7.9 Hybrid Solar Cell
24(1)
1.7.10 Dye-Sensitized Solar Cell
24(1)
1.8 Discussion and Conclusions
24(5)
References
27(2)
Chapter 2 Nanotechnology Fundamentals
29(20)
2.1 Nanotechnology
29(1)
2.2 Nanomaterials
29(1)
2.3 0D Nanomaterials
29(3)
2.3.1 Nanoparticle
29(1)
2.3.2 Buckminsterfullerene (C60)
30(1)
2.3.3 Quantum Dot
30(2)
2.4 1D Nanomaterials
32(5)
2.4.1 Nanowire
32(1)
2.4.2 Carbon Nanotube
33(4)
2.5 2D Nanomaterials
37(4)
2.5.1 Graphene
37(1)
2.5.2 2D Perovskites
38(1)
2.5.3 Quantum Well
39(2)
2.6 Scope for Nanotechnology Application in Solar Cells and Organizational Structure of the Book
41(4)
2.6.1 Use of Nanocrystalline Silicon in Solar Cells
41(1)
2.6.2 Nanotexturing Solar Cell Surface
41(1)
2.6.3 Using Plasmonic Nanostructures for Maximizing Light Coupling in Solar Cells
42(1)
2.6.4 Further Approaches to Light Incoupling in Solar Cells
43(1)
2.6.5 Sensitizing Metal Oxide Semiconductor (TiO2) Nanoparticles with Dye
43(1)
2.6.6 Promises of 2D Perovskites Nanomaterials
43(1)
2.6.7 Applications of Carbon Nanostructures
44(1)
2.6.8 Applications of Nanowires
44(1)
2.6.9 Applications of Quantum Wells
45(1)
2.6.10 Applications of Quantum Dots
45(1)
2.7 Discussion and Conclusions
45(4)
References
48(1)
Chapter 3 Nanocrystalline Silicon-Based Solar Cells
49(18)
3.1 Nanocrystalline, Polycrystalline, and Amorphous Silicon Phases as Photovoltaic Cell Materials
49(1)
3.1.1 Nanocrystalline Silicon
49(1)
3.1.2 Nanocrystalline vs. Polysilicon
49(1)
3.1.3 Amorphous Silicon
50(1)
3.1.4 Advantages of Nanocrystalline Silicon over Amorphous and Polysilicon
50(1)
3.2 Plasma-Enhanced Chemical Vapor Deposition of a-Si:H and nc-Si:H Films
50(1)
3.2.1 Effect of Hydrogen Dilution
50(1)
3.2.2 High-Pressure Depletion (HPD) Regime
51(1)
3.3 Silicon Heterojunction (SHJ) Solar Cell
51(1)
3.3.1 Fabrication of the Solar Cell
51(1)
3.3.2 Process Sequence
52(1)
3.3.3 Back Surface Field (BSF)
52(1)
3.4 Front- and Rear-Emitter Silicon Heterojunction Solar Cell
52(3)
3.4.1 Front-Emitter Solar Cell
52(1)
3.4.2 Rear-Emitter Solar Cell
52(3)
3.4.3 Advantages of Rear-Emitter Design
55(1)
3.5 Replacement of Amorphous Silicon by Nanocrystalline Silicon as Electron/Hole Collectors
55(2)
3.5.1 Reasons for Replacement
55(1)
3.5.2 Effects of Replacement
55(2)
3.6 Nanocrystalline N-Type Silicon Oxide Films as Front Contacts in Rear-Emitter Solar Cells
57(1)
3.6.1 Effect of Refractive Index Matching of Two Optical Media upon Reflection of Light at Their Interface
57(1)
3.6.2 Comparing Reflectances at the Interfaces a-Si:H/TCO, nc-Si:H/TCO, and nc-SiO2:H/TCO
57(1)
3.6.3 Difficulty in Deposition of Thin nc-SiO2:H Film Over (I)a-Si:H Layer
58(1)
3.7 Nanocrystalline Silicon Thin-Film Solar Cell on Honeycomb-Textured Substrate
58(1)
3.8 Discussion and Conclusions
58(9)
References
62(5)
Part II Nanotechnological Approaches to Sunlight Harvesting
Chapter 4 Nanotextured-Surface Solar Cells
67(40)
4.1 Optical Losses in a Solar Cell and Loss-Reduction Approaches
67(1)
4.1.1 Optical Losses
67(1)
4.1.2 Optical Loss Reduction by Optical Transmittance Enhancement
67(1)
4.1.3 Optical Loss Reduction by Optical Path Lengthening
67(1)
4.2 Optical Transmittance Enhancement by Nanotexturing
68(4)
4.2.1 Reflectance and Transmittance Equations
68(2)
4.2.2 Effects of Sizes of Structures of the Textured Interface Morphology on its Reflectance
70(2)
4.3 Nanotextured Surface Properties, Examples in Nature, and Comparison with Microtexturing
72(2)
4.3.1 Self-Cleaning Property of Nanotextured Surfaces
72(1)
4.3.2 Moth-Eye Nanostructured Surfaces
72(1)
4.3.3 Nanotexturing vs. Microtexturing
73(1)
4.4 Nanotextured Silicon Solar Cell Fabrication
74(21)
4.4.1 Inverted Nanopyramid Crystalline Silicon Solar Cell by a Maskless Technique (η = 7.12%)
74(4)
4.4.2 Ultrathin (Sub-10μum) Silicon Solar Cell with Silicon Nanocones and All Contacts on the Backside (η = 13.7%)
78(1)
4.4.2.1 Carrier Recombination Problems Faced in a Front-Emitter Solar Cell
78(1)
4.4.2.2 Solving the Recombination Problem
78(1)
4.4.2.3 Fabrication of the Solar Cell
78(6)
4.4.2.4 Planar Cell and Nanocone Cell Parameters
84(1)
4.4.3 10-u.m-Thick Periodic Nanostructured Crystalline Silicon Solar Cell (η = 15.7%)
84(9)
4.4.4 Two-Scale (Micro/Nano) Surface Textured Crystalline Silicon Solar Cell (η = 17.5%)
93(2)
4.5 Nanotextured Solution-Processed Perovskite Solar Cell (η = 19.7%)
95(8)
4.6 Discussion and Conclusions
103(4)
References
105(2)
Chapter 5 Plasmonic-Enhanced Solar Cells
107(28)
5.1 Plasma, Plasmon, and Plasmonics
107(1)
5.1.1 Plasma
107(1)
5.1.2 Plasmon
107(1)
5.1.3 Plasmonics
107(1)
5.2 Surface Plasmons, Localized Surface Plasmons, and Surface Plasmon Polaritons
107(4)
5.2.1 Surface Plasmons
107(1)
5.2.2 Localized Surface Plasmons
107(1)
5.2.3 Surface Plasmon Polaritons
108(1)
5.2.4 Localized Surface Plasmon Resonance (LSPR) and Propagating Surface Plasmon Resonance (PSPR)
108(1)
5.2.4.1 Localized SPR
108(1)
5.2.4.2 Propagating SPR
109(2)
5.3 Absorption and Scattering of Light
111(3)
5.3.1 Absorption of Light
111(1)
5.3.2 Scattering of Light
112(1)
5.3.3 Absorption and Scattering Cross Sections of a Particle
112(2)
5.4 Surface Plasmon Effects in Solar Cells
114(5)
5.4.1 LSPR with Metal Nanoparticles
114(1)
5.4.1.1 Device Structures Used
114(1)
5.4.1.2 Resonance Frequency Formula for LSPR
114(3)
5.4.1.3 Red Shifting of Resonance Frequency by Embedded Metal Nanoparticles
117(1)
5.4.1.4 Intensification of Local Electric Field of Light at Resonance
117(1)
5.4.1.5 Enhancement of Scattering of Light at Resonance
118(1)
5.4.2 PSPR at Metal-Semiconductor Interface
118(1)
5.4.2.1 Necessity of Coupling Medium for Exciting Surface Plasmon Polaritons
118(1)
5.4.2.2 Approaches for Matching Momenta
118(1)
5.5 Plasmonic-Enhanced GaAs Solar Cell Decorated with Ag Nanoparticles (η = 5.9%)
119(6)
5.6 Plasmonic-Enhanced Organic Solar Cells
125(3)
5.6.1 LSPR Effect of Gold Nanospheres in the Buffer Layer (η = 2.36%)
125(1)
5.6.2 Combined Surface Plasmon Effects from Ag Nanodisks in Hole Transport Layer and ID-Imprinted Al Grating of a Bulk Heterojunction Solar Cell (η = 3.59%)
126(1)
5.6.3 Multiple Effects of Au Nanoparticles Embedded in the Buffer Layer of Inverted Bulk Heterojunction Solar Cell (η = 7.86%)
127(1)
5.7 Plasmonic-Enhanced Perovskite Solar Cells
128(3)
5.7.1 Reduced Exciton Binding Energy Effect in Perovskite Solar Cell with Core-Shell Metal Nanoparticles (η = 11.4%)
128(1)
5.7.2 LSPR Effect of Gold Nanorods in the Electron Transport Layer of Inverted Perovskite Solar Cell (η = 13.7%)
128(3)
5.8 Discussion and Conclusions
131(4)
References
133(2)
Chapter 6 Optically Improved Nanoengineered Solar Cells
135(28)
6.1 Introspection on Light Management in Solar Cells
135(1)
6.1.1 Antireflection Coating
135(1)
6.1.2 Micropy ram id-Like Texturing by Wet-Etching in Alkaline Solutions
135(1)
6.1.3 Nanopy ram id-like Texturing by Lithographical Techniques
135(1)
6.1.4 Plasmonic Effects of Metal Nanoparticles or Thin Films
135(1)
6.1.5 Other Ways of Light Trapping
136(1)
6.2 Ultrathin GaAs Absorber (205nm) Solar Cell with TiO2/Ag Nanostructured Back Mirror
136(7)
6.2.1 Justification for Thinning of the Absorber Layer Together with Advanced Light Loss Reduction Technique
137(1)
6.2.2 Multiresonant Absorption of Light
137(1)
6.2.3 Location and Geometrical Parameters of the Nanostructured Mirror
137(1)
6.2.4 Fabrication and Performance of the Solar Cell
137(6)
6.3 Ultrathin CIGSe Absorber (460 nm) Solar Cell with Dielectric Nanoparticles
143(6)
6.3.1 Structure of the Solar Cell
143(2)
6.3.2 Drawbacks of Plasmonic Metal Nanoparticles
145(1)
6.3.3 Scattering Properties of Dielectric Nanoparticles
145(1)
6.3.4 Fabrication of the Solar Cell with Silica Dielectric Nanoparticles at the Rear Surface
145(4)
6.3.5 Solar Cell with Silica Nanoparticles vs. Flat Solar Cell without Silica Nanoparticles
149(1)
6.3.6 Solar Cell with TiO2 Nanoparticles on the Front Surface
149(1)
6.4 Periodic Nanohole Array Solar Cell
149(4)
6.4.1 Positive and Negative Textures
149(1)
6.4.2 Nanowires and Nanopores
149(1)
6.4.3 Fabrication of Nanohole Array Solar Cell
149(4)
6.5 Random Nanohole Array Solar Cell
153(2)
6.5.1 Fabrication of Random Nanohole Array
153(2)
6.5.2 Fabrication and Parameters of Solar Cell
155(1)
6.6 Silicon Nanohole/Organic Semiconductor Heterojunction Hybrid Solar Cell
155(3)
6.6.1 Fabrication of Hybrid Solar Cell
155(3)
6.6.2 Parameters of the Solar Cell
158(1)
6.7 Discussion and Conclusions
158(5)
References
160(3)
Part III Electrochemical Photovoltaics Using Nanomaterials
Chapter 7 Dye-Sensitized Solar Cells
163(22)
7.1 Construction and Working Principle of a Dye-Sensitized Solar Cell (DSSC)
163(2)
7.1.1 The Nanoconstituent of the Cell
163(1)
7.1.2 Cell Construction
163(1)
7.1.3 Cell Principle
163(1)
7.1.4 Mimicking the Natural Photosynthesis Process
163(2)
7.2 DSSC Components
165(4)
7.2.1 Transparent Conductive Substrate
165(1)
7.2.2 Nanostructured Semiconductor Working Electrode (Photoanode)
165(1)
7.2.3 Dye (Photosensitizer)
165(1)
7.2.3.1 Naturally Occurring Dyes
166(1)
7.2.3.2 Metal Complex Sensitizers
166(1)
7.2.3.3 Metal-Free Organic Dyes
167(1)
7.2.4 Electrolyte
167(1)
7.2.4.1 Tasks Performed by the Electrolyte
167(1)
7.2.4.2 Essential Properties of the Electrolyte
167(1)
7.2.4.3 Liquid Electrolytes
167(1)
7.2.4.4 Solid and Quasisolid Electrolytes
168(1)
7.2.5 Counter Electrode (CE)
169(1)
7.3 Forward and Backward Electron Transfer Processes in DSSC
169(4)
7.3.1 Forward Electron Transfer Processes
169(1)
7.3.1.1 Receipt and Absorption of Sunlight by the Dye and Promotion of an Electron in the Dye from Its HOMO to the LUMO (Ground State to Excited State)
169(1)
7.3.1.2 Injection of an Electron from the LUMO of the Dye to the Conduction Band of the Semiconductor (TiO2): Charge Separation
170(2)
7.3.1.3 Diffusion of the Electron through the TiO2 Nanonetwork to Reach the TCO Layer
172(1)
7.3.1.4 Flow of the Electron through the External Circuit Reaching the Counter Electrode
172(1)
7.3.1.5 Reduction of I3 Ion in the Electrolyte to I-Ion by the Arriving Electron at the Counter Electrode
172(1)
7.3.1.6 Acceptance of an Electron by the Dye From the I-Ion in the Electrolyte, Restoring It to Its Original State
172(1)
7.3.1.7 Diffusion of I3-Ion Mediator towards the Counter Electrode and Its Reduction to I Ion by Receiving an Electron from the External Circuit Recovering Its Initial State
173(1)
7.3.2 Backward Electron Transfer Processes: Loss Mechanisms
173(1)
7.4 Effect of Doping the TiO2 Photoanode Film with Gold Nanoparticles on DSSC Performance
173(2)
7.4.1 Synthesis of Au Nanoparticles
174(1)
7.4.2 TiO2 Film Deposition
174(1)
7.4.3 Sensitization of TiO2 Film with Dye
175(1)
7.4.4 Counter Electrode Fitting and Assembly of the Solar Cell
175(1)
7.4.5 Characterization of Solar Cell
175(1)
7.4.6 Dependence of Solar Cell Efficiency on Nanoparticle Dimensions and Shape
175(1)
7.5 Effect of Inclusion of Broadband Near-Infrared Upconversion Nanoparticles (UCNPs) in the TiO2 Photoanode of DSSC on Its Power Conversion Efficiency
175(3)
7.5.1 How Upconversion Nanoparticles Assist in Utilization of Low-Energy Photons?
175(2)
7.5.2 Preparation of Upconversion Nanoparticles
177(1)
7.5.3 Preparation of 1R783 Dye-Sensitized Upconversion Nanoparticles
177(1)
7.5.4 Reason for Sensitizing the Upconversion Nanoparticles with IR783 Dye
177(1)
7.5.5 Making the N719 Dye-Sensitized TiO2 Photoanode
177(1)
7.5.6 Deposition of IR783 DSUNPs on N719 Dye-Sensitized TiO2 Photoanode
177(1)
7.5.7 Making the Counter Electrode of Platinized FTO Glass
177(1)
7.5.8 Sealing the IR783 DSUNPs@N719 Dye-Sensitized TiO2 Photoanode with Counter Electrode
177(1)
7.5.9 DSUCNPs-Sensitized DSSC Testing
177(1)
7.6 Discussion and Conclusions
178(7)
References
180(5)
Part IV Photovoltaics with 2D Perovskites and Carbon Nanomaterials
Chapter 8 2D Perovskite and 2D/3D Multidimensional Perovskite Solar Cells
185(22)
8.1 The 3D Perovskite
185(1)
8.1.1 Favorable Properties of 3D Perovskites for Solar Cell Fabrication
185(1)
8.1.2 Shortcomings of 3D Perovskites for Use in Solar Cells
185(1)
8.2 The 2D Perovskite
186(6)
8.2.1 What Happens When the A-Site Cation Is Large in Size?
186(5)
8.2.2 2D Perovskites as a Promising Option
191(1)
8.2.3 Inferior Aspects of 2D Perovskites to 3D Perovskites
191(1)
8.2.4 The Two Routes to Success
192(1)
8.3 2D Perovskite Solar Cells
192(5)
8.3.1 PbBr2-Incorporated 2D Perovskite Solar Cell (η = 12.19%)
192(2)
8.3.2 2D GA2M A4Pb5I16 Perovskite Solar Cell Interface Engineered with GABr (η = 19.3%)
194(1)
8.3.3 FA-Based 2D Perovskite Solar Cell (η = 21.07%)
195(2)
8.4 2D/3D Perovskite Solar Cells
197(5)
8.4.1 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 Perovskite Interface Engineered Solar Cell (η = 14.6%)
197(1)
8.4.2 2D Perovskite-Encapsulated 3D Perovskite Solar Cell (η = 16.79%)
198(2)
8.4.3 Hole Transport Material-Free Perovskite Solar Cell Using 2D Perovskite as an Electron Blocking Layer Over 3D Perovskite Light-Absorbing Layer (η = 18.5%)
200(1)
8.4.4 Polycrystalline FAPbI3 3D Perovskite Solar Cell with 2D PEA2PbI4 Perovskite at Grain Boundaries (η = 19.77%)
200(2)
8.5 Discussion and Conclusions
202(5)
References
204(3)
Chapter 9 Carbonaceous Nanomaterials-Based Solar Cells
207(26)
9.1 Using Carbon Nanotubes to Make an Inexpensive Counter Electrode for a Dye-Sensitized Solar Cell
207(1)
9.1.1 Replacing Platinum with CNTs-Coated Nonconductive Glass Plate
207(1)
9.1.2 Replacing Platinum with Pt NPs/CNTs Nanohybrid-Coated Nonconductive Glass Plate
207(1)
9.1.3 Performance of CNTs and Pt NPs/CNTs Electrodes in a Solar Cell
207(1)
9.1.4 Pt NPs/CNTs Nanohybrid
207(1)
9.1.5 CNTs and Pt NPs/CNTs Dispersants
208(1)
9.1.6 CNTs and Pt NPs/CNTs Electrodes
208(1)
9.1.7 Dye-Sensitized Solar Cells with CNTs and Pt NPs/CNTs Electrodes
208(1)
9.1.8 Parameters of Solar Cells with CNTs and Pt NPs/CNTs Electrodes
208(1)
9.2 Using Carbon Nanotubes to Improve the Properties of TiO2-Based Electron Transport Material in Perovskite Solar Cells
208(6)
9.2.1 Advantages and Limitations of TiO2 as an Electron Transport Material
211(1)
9.2.2 Choice of CNTs as TiO2 Conductivity-Enhancement Nanomaterials
211(1)
9.2.3 Fabrication of the Solar Cell Using TiO2 NPs-SWCNTs Nanocomposite
211(2)
9.2.4 Solar Cell with TiO2NPs-SWCNTs and Control Cell
213(1)
9.3 Using CNTs and C60 to Make a High-Stability, Cost-Effective Perovskite Solar Cell
214(1)
9.3.1 Material Replacements in Traditional Structure
214(1)
9.3.2 Fabrication of Perovskite Solar Cell with Replaced Materials
214(1)
9.3.3 Solar Cell Performance vs. Cost
215(1)
9.4 Integrating CNTs in a Silicon-Based Solar Cell: Si-CNTs Hybrid Solar Cell
215(3)
9.4.1 Advantages of CNTs Integration
216(1)
9.4.2 Fabrication of the Solar Cell
216(1)
9.4.3 Testing of the Solar Cell
216(2)
9.5 Si-CNTs Hybrid Solar Cell Fabrication by Superacid Sliding Coating
218(5)
9.5.1 Superacid Slide Casting Method for High-Quality CNTs Film Preparation
218(2)
9.5.2 Process Sequence
220(3)
9.6 TiO2-Coated CNTs-Si Solar Cell
223(1)
9.7 Using Graphene to Make Semitransparent Perovskite Solar Cells
223(2)
9.7.1 Semitransparent Solar Cells and Suitability of Graphene for These Cells
223(1)
9.7.2 Parts of Semitransparent Solar Cell
223(1)
9.7.2.1 Making Part I
223(1)
9.7.2.2 Making Part II
223(1)
9.7.2.3 Assembling Together Parts I and II
224(1)
9.7.2.4 Multilayer Graphene and Gold Electrode Solar Cells
225(1)
9.8 Graphene/N-Type Si Schottky Diode Solar Cell
225(2)
9.8.1 Doping Graphene with TFSA
225(1)
9.8.2 Fabrication of Graphene/N-Si Solar Cell
226(1)
9.8.3 Parameters of Solar Cell with and without Doping with TFSA
227(1)
9.9 Discussion and Conclusions
227(6)
References
230(3)
Part V Quantum Well, Nanowire, and Quantum Dot Photovoltaics
Chapter 10 Quantum Well Solar Cells: Particle-in-a-Box Model and Bandgap Engineering
233(32)
10.1 What is a Quantum Well Solar Cell?
233(1)
10.1.1 QW Solar Cell as a Way of Extending the Useful Range of Solar Spectrum Utilized for Energy Conversion
233(1)
10.1.2 QW Solar Cell as an Approach towards Realizing Multijunction Solar Cells with Optimal Bandgaps
233(1)
10.2 The QW Structure
233(4)
10.3 Physics of Quantum Wells
237(18)
10.3.1 Particle-in-a-Box Model of the Quantum Well
237(4)
10.3.2 Imagining Quantum Well as a Finite Potential Well
241(1)
10.3.3 Energy States of a Quantum Well and Defining an Effective Bandgap of the Quantum Well
241(1)
10.3.4 Difference between the Multiple-Quantum Well and Superlattice Structures
241(2)
10.3.5 Charge Transport Mechanisms in the Quantum Well Solar Cell
243(2)
10.3.6 Excitonic Model of Optical Absorption
245(10)
10.4 Bandgap Engineering of Quantum Well Architectures
255(3)
10.5 Inclusion of Strain and Electric Field Effects for Generalization of Energy Gap Variation Equation
258(1)
10.6 Discussion and Conclusions
259(6)
References
263(2)
Chapter 11 Quantum Well Solar Cells: Material Systems and Fabrication
265(22)
11.1 Techniques for Growth of Quantum Well Structures
265(3)
11.1.1 Molecular Beam Epitaxy
265(1)
11.1.2 Metal-Organic Chemical Vapor Deposition
266(1)
11.1.3 Difference between MBE and MOCVD
267(1)
11.2 Materials Systems and Structures for Quantum Well Solar Cells
268(4)
11.2.1 Lattice-Matched Quantum Well Solar Cells
268(1)
11.2.2 Strain-Balanced Quantum Well Solar Cells
268(4)
11.2.3 Strained Quantum Well Solar Cells
272(1)
11.3 Inverted GaAs Solar Cell with Strain-Balanced GalnAs/GaAsP Quantum Wells (η = 27.2%)
272(4)
11.4 GalnP/GaAs Dual-Junction Solar Cell with Strain-Balanced GalnAs/GaAsP Quantum Wells in the Bottom Cell (η = 32.9%)
276(2)
11.5 Triple-Junction Solar Cell with GalnAs/GaAsP Quantum Wells in the Middle Cell (η = 39.5%)
278(2)
11.6 Discussion and Conclusions
280(7)
References
285(2)
Chapter 12 Nanowire Solar Cells: Configurations
287(24)
12.1 Reasons for Interest in Nanowire Solar Cells
287(1)
12.2 Broad Classification of Nanowire Solar Cells
288(6)
12.2.1 Two Types of Solar Cells According to the Number of Nanowires
288(1)
12.2.2 Two Types of Solar Cells According to Direction of Charge Separation
288(1)
12.2.3 Radial vs. Axial Junction Solar Cell
288(6)
12.3 Nanowire Solar Cell Properties and Operation through Examples
294(13)
12.4 Discussion and Conclusions
307(4)
References
309(2)
Chapter 13 Nanowire Solar Cells: Fabrication
311(52)
13.1 Single-Nanowire Solar Cells
311(11)
13.1.1 Single GaAs Nanowire Solar Cell in Vertical Configuration (η = 40%)
311(1)
13.1.1.1 Fabrication Plan Outline
311(1)
13.1.1.2 Preparation of Oxidized P+ Silicon (100) Substrate with Apertures of 50-70nm Size
311(1)
13.1.1.3 Ga-Assisted VLS Growth of P-type GaAs Nanowire Core
311(1)
13.1.1.4 Growth of PMype GaAs Nanowire Shell
312(2)
13.1.1.5 Growth of an Undoped and N-type GaAs Nanowire Shell
314(1)
13.1.1.6 Making Electrical Contacts with the Nanowire
314(2)
13.1.1.7 Solar Cell Parameters
316(1)
13.1.2 Surface-Passivated Single GaAsP Nanowire Solar Cell in Horizontal Configuration (η = 10.2%)
317(1)
13.1.2.1 Fabrication Plan Outline
317(1)
13.1.2.2 Growth of P-I-N Radial Junction Core-Shell GaAs0.8P0.2 Nanowires
317(5)
13.1.2.3 Surface Passivation
322(1)
13.1.2.4 Nanowire Removal from Growth Substrate and Alignment on P+ Substrate
322(1)
13.1.2.5 P-Contact to the Nanowire
322(1)
13.1.2.6 N-Contact to the Nanowire
322(1)
13.1.2.7 Contact Pads
322(1)
13.1.2.8 Solar Cell Parameters
322(1)
13.2 GaAs Nanowire-on-Si Tandem Solar Cell (η = 11.4%)
322(1)
13.3 GaAs Nanowire Array Solar Cell (η = 15.3%)
323(6)
13.3.1 Making Au Disk Pattern
323(1)
13.3.2 VLS Method of Nanowire Growth
324(1)
13.3.3 P- and N-Type Doping
324(1)
13.3.4 Passivation
324(5)
13.3.5 Nanowire Diameter, Length, and Segments
329(1)
13.3.6 SiO2 Deposition and Surface Planarization
329(1)
13.3.7 Electrical Contacts
329(1)
13.3.8 GaAs Cell Parameters
329(1)
13.4 InP Nanowire Array Solar Cell Fabrication by Bottom-Up Approaches
329(7)
13.4.1 Solar Cell (η = 11.1%) with InP Nanowires Grown via Vapor-Liquid-Solid Mechanism and Surface Cleaning
329(1)
13.4.1.1 Nanowire Growth, Doping, and Passivation
329(1)
13.4.1.2 Top and Bottom Contacts
330(1)
13.4.1.3 Solar Cell Parameters
330(1)
13.4.1.4 Role of Nanowire Surface Cleaning
330(1)
13.4.2 Solar Cell (η = 13.8%) with Epitaxially Grown InP Nanowires
330(1)
13.4.2.1 InP Nanowire Growth and Covering Its Sidewalls with SiO2
330(1)
13.4.2.2 Making Contacts
330(1)
13.4.2.3 Solar Cell Parameters
330(6)
13.5 InP Nanowire Array Solar Cell (η = 17.8%) Fabrication by Top-Down Approach: Dry-Etching from Epitaxially Grown Stack
336(7)
13.5.1 Epitaxy
336(6)
13.5.2 Lithography
342(1)
13.5.3 Dry-Etching
342(1)
13.5.4 Nanowire Dimensions
342(1)
13.5.5 SiO2 Deposition and BCB Filling
342(1)
13.5.6 Top Electrode
342(1)
13.5.7 ITO Spreading and Rearrangement by Self-Alignment over the InP and BCB
342(1)
13.5.8 Role of Nanostructured ITO
342(1)
13.5.9 Bottom Electrode
343(1)
13.5.10 Gold Border Film
343(1)
13.5.11 InP Cell Parameters
343(1)
13.6 Wet-Etching Processes of Silicon Nanowire Array Solar Cell Fabrication
343(9)
13.6.1 Radial Junction Solar Cell (η = 13.7%) Fabrication on P-type Wafers with Si NWs Made by Wet-Etching
343(1)
13.6.1.1 Fabrication Plan Outline
343(2)
13.6.1.2 Metal-Assisted Chemical Etching (MACE or MacEtch) of Silicon
345(1)
13.6.1.3 Nanowire Diameter and Areal Density
346(1)
13.6.1.4 Removal of Ag Residues
346(1)
13.6.1.5 Formation of N-Type Shell Layer
346(1)
13.6.1.6 Metallization
346(1)
13.6.1.7 Solar Cell Testing
347(1)
13.6.2 Solar Cell ((η = 17.11%) with Dielectric Passivation of Si Nanowires
347(1)
13.6.2.1 Fabrication Plan Outline
347(3)
13.6.2.2 Nanowire Creation by Etching P-type Si Wafer, N-Type Shell Formation, and Surface Passivation
350(1)
13.6.2.3 Optical Reflectance, Carrier Recombination Properties, and Efficiency
350(1)
13.6.3 Solar Cell (η = 13.4%) Fabrication on N-Type Si Wafers
350(1)
13.6.3.1 Nanowire Formation
350(1)
13.6.3.2 Nanowire Doping
350(1)
13.6.3.3 Contacts
350(1)
13.6.3.4 Comparison of Two Geometrical Designs
350(1)
13.6.3.5 Reflectance Dependence on Nanowire Length
351(1)
13.7 Dry-Etching Process of Silicon Nanowire Array Solar Cell (η = 11.7%) Fabrication
352(3)
13.7.1 SiO2 Hard Mask Creation for Silicon Etching
352(1)
13.7.2 Silicon Etching
352(1)
13.7.3 Photoresist and Oxide Removal
352(3)
13.7.4 N-Type Layer Formation by Ion Implantation
355(1)
13.7.5 Dopant Activation
355(1)
13.7.6 Nanowire Surface Passivation
355(1)
13.7.7 Backside Contact
355(1)
13.7.8 Top Contact
355(1)
13.7.9 Photovoltaic Properties of the Cell
355(1)
13.8 Discussion and Conclusions
355(8)
References
360(3)
Chapter 14 Quantum Dot Solar Cells: Bandgap and Multicarrier Effects
363(32)
14.1 Bandgap Tuning of Quantum Dots
363(11)
14.1.1 Quantum Dots as a Particle-in-a-Box System
363(1)
14.1.2 Effective Bandgap of the Quantum Dot
364(10)
14.2 Multiple Exciton Generation (MEG)
374(2)
14.2.1 Difference between Bulk Solar Cell and Quantum Dot Solar Cell
374(1)
14.2.2 Reason for Greater Likelihood of MEG in a Quantum Dot
375(1)
14.2.3 Corresponding Terms for a Bulk Semiconductor and a Quantum Dot
376(1)
14.3 Drawing Energy Band Diagrams of Heterojunctions
376(13)
14.3.1 Rules and Considerations in the Construction of Energy Band Diagrams of Heterojunctions
376(1)
14.3.2 Driving Energy for Charge Transfer across a Heterojunction
377(12)
14.4 Discussion and Conclusions
389(6)
References
393(2)
Chapter 15 Quantum Dot Solar Cells: Types of Cells and Their Fabrication
395(48)
15.1 Classification of Quantum Dot Solar Cells
395(1)
15.2 Quantum Dot P-N Junction Solar Cells
396(7)
15.2.1 PbS QD Solar Cell with NaHS-Treated P-Type Layer (η = 7.6%)
396(1)
15.2.1.1 Substrate
397(1)
15.2.1.2 Oleic Acid-Capped PbS QD Synthesis
397(1)
15.2.1.3 Anatase TiO2 Deposition
397(1)
15.2.1.4 N-Type PbS Film (PbS QDs Treated with TBAI) Deposition
397(1)
15.2.1.5 P-Type PbS Film (PbS QDs Capped with EDT) Deposition
397(1)
15.2.1.6 MoO3 (5nM) and Au (80nm) Deposition
397(1)
15.2.1.7 Enhancement of Power Conversion Efficiency by Increase in P-Type Doping with NaHS Treatment
397(1)
15.2.2 Improved Reliability PbS QD Solar Cell with Atomic-Layer Deposited TiO2 Electron Transport Layer (η = 5.5--7.2%)
397(2)
15.2.3 Low-Cost PbS QD Solar Cell with ZnO Electron Transport Layer and Stable Cr-Ag Electrodes (η = 6.5%)
399(1)
15.2.4 PbS QD Solar Cell by a Scalable Industrially Suited Doctor Blading Process Using N- and P-Type Inks (η = 9%)
399(1)
15.2.5 PbS QD Solar Cell with PD2FCT-29DPP as HTL (η = 14%)
399(2)
15.2.6 PbS QD Solar Cell (η = 10.06%) as the Back Cell in a Tandem Solar Cell (η = 18.9%)
401(1)
15.2.6.1 Front Semitransparent Perovskite Solar Cell
401(1)
15.2.6.2 Back Colloidal Quantum Dot Solar Cell
401(1)
15.2.6.3 Stacking the Cells for Proper Light Coupling
401(2)
15.2.7 PbS QD Solar Cell (η = 11.6%) as the Back Cell in a Tandem Solar Cell (η = 20.2%)
403(1)
15.3 Quantum Dot Schottky Barrier Solar Cell (η = 1.8%)
403(4)
15.3.1 Synthesis of PbS QD Film and Ligand Exchange for Improving Conductivity
403(3)
15.3.2 PbS QD Film Deposition and Making Contacts
406(1)
15.3.3 Operation
406(1)
15.3.4 Solar Cell Performance Parameters
406(1)
15.3.5 Shortcomings of Schottky Diode Quantum Dot Solar Cells
406(1)
15.4 Quantum Dot-Depleted Heterojunction Solar Cell (η = 3.36%)
407(4)
15.4.1 TiO2 Nanoparticle Film
409(1)
15.4.2 PbS QD Synthesis
409(1)
15.4.3 Layer-by-Layer Deposition of PbS QD Film on Porous TiO2 Film
409(1)
15.4.4 Top Electrode Deposition
409(1)
15.4.5 Measurements
410(1)
15.4.6 Working of the Cell
410(1)
15.4.7 Surmounting the Drawbacks of Schottky Diode Cell
410(1)
15.5 Quantum Dot-Depleted Bulk Heterojunction Solar Cell (η = 5.5%)
411(2)
15.5.1 Disadvantages of Schottky Diode and Depleted Heterojunction Structures and Evolving Improved Designs
411(1)
15.5.2 Difference between Fabrication Processes of DH and DBH Solar Cells
411(2)
15.6 Quantum Dot Hybrid Solar Cell (η = 4.91%)
413(2)
15.6.1 Necessity of Hybrid QD Solar Cell
413(1)
15.6.2 Hybrid QD Solar Cell Structure
413(1)
15.6.3 P3HT-Br Synthesis
413(1)
15.6.4 Formation of P3HT-6-PS
413(1)
15.6.5 PbS QD Synthesis
413(1)
15.6.6 Substrate Cleaning
413(2)
15.6.7 PEDOT: PSS Coating
415(1)
15.6.8 P3HT-b-PS/PbS QDs Coating
415(1)
15.6.9 Post-Ligand Exchange to BDT
415(1)
15.6.10 Pure Layer of PbS QDs with Oleic Acid Ligands
415(1)
15.6.11 Cathode Deposition
415(1)
15.6.12 Solar Cell Testing
415(1)
15.7 Quantum Dot-Sensitized Solar Cell
415(2)
15.7.1 Similarities and Dissimilarities with DBH Solar Cell
415(1)
15.7.2 Difference from Dye-Sensitized Solar Cell
415(1)
15.7.3 Construction
416(1)
15.7.4 Principle
416(1)
15.8 Fabrication of PbS QD-Sensitized Solar Cells
417(3)
15.8.1 PbS-ZnS QDs-Sensitized Solar Cells (η = 2.41, 4.01%)
417(1)
15.8.1.1 Mesoporous TiO2 Film Deposition on FTO Substrate
417(2)
15.8.1.2 Deposition of PbS QDs on TiO2 Layer
419(1)
15.8.1.3 Deposition of ZnS Passivation Layer
419(1)
15.8.1.4 Electrolyte
419(1)
15.8.1.5 Deposition of Cu2S Film on Brass Foil to Make the Counter Electrode
419(1)
15.8.1.6 Photovoltaic Characterization of the Solar Cell
419(1)
15.8.2 PbS-ZnS QDSSC (η = 5.82%)
419(1)
15.8.2.1 Compact TiO2 layer
419(1)
15.8.2.2 Porous TiO2 Layer
419(1)
15.8.2.3 Sensitization of Porous TiO2 Layer with PbS QDs
419(1)
15.8.2.4 Passivation of QDs with ZnS, Electrolyte Injection, and Device Assembly
420(1)
15.9 Fabrication of CdS QD-Sensitized Solar Cells
420(8)
15.9.1 CdS QDSSC with η = 1.84%
420(2)
15.9.1.1 CdS QDs-Modified TiO2 Electrode
422(1)
15.9.1.2 Counter Electrode
422(1)
15.9.1.3 Redox Electrolyte
422(1)
15.9.1.4 Sealing
422(1)
15.9.1.5 Efficiency
422(1)
15.9.2 CdS QDSSC Using Graphene Oxide Powder (η = 2.02%)
422(1)
15.9.3 Increasing the QDSSC Efficiency by Modification of CdS with 2D g-C3N4 (η = 2.31%)
423(2)
15.9.4 Raising the QDSSC Efficiency by Mn-Doping of CdS (η = 3.29%)
425(1)
15.9.5 GO/N-Doped TiO2/CdS/Mn-Doped ZnS/Zn-Porphyrin QDSSC (η = 4.62%)
426(2)
15.9.6 Mixed-Joint CdS-ZnS QDSSC (η = 6.37%) and ZnS QDSSC (η = 2.72%)
428(1)
15.10 Quantum Dot Intermediate Band Solar Cell (η = 16.3%)
428(6)
15.10.1 Intermediate Band Solar Cell Concept and Energy Band Diagram
428(4)
15.10.2 Quantum Engineering
432(1)
15.10.3 Growth of Quantum Dots
432(1)
15.10.4 Device Structure
433(1)
15.10.5 Signature of Intermediate Band
434(1)
15.10.6 Photovoltaic Parameters of the QD-IBSC
434(1)
15.11 Discussion and Conclusions
434(9)
References
440(3)
Index A Solar cells 443(2)
Index B General 445
Vinod Kumar Khanna is an independent researcher at Chandigarh, India. He received the Ph.D. degree in physics from Kurukshetra University, Kurukshetra, India in 1988. He is a Retired Chief Scientist and Head, MEMS & Microsensors Group, from the CSIR-Central Electronics Engineering Research Institute, Pilani, India, and a Professor with the Academy of Scientific and Innovative Research, Ghaziabad, India. He is a former Emeritus Scientist, CSIR and Emeritus Professor, AcSIR. He has worked at CSIR-CEERI for more than 37 years on the design, fabrication and characterization of power semiconductor devices and micro/nanoelectronic sensors. He has authored 18 books and six chapters in edited books. He has authored/coauthored 194 research papers in refereed journals and conference proceedings. He also has five patents to his name.