Preface |
|
xv | |
Acknowledgments |
|
xix | |
1 Nanocrystal Materials, Fabrications, and Characterizations |
|
1 | (74) |
|
|
|
|
2 | (7) |
|
1.1.1 Nanomaterials for a Nonvolatile Memory Device |
|
|
4 | (1) |
|
1.1.2 Overview of Nonvolatile Memory |
|
|
5 | (2) |
|
1.1.3 Classification of Nanomaterials |
|
|
7 | (2) |
|
1.2 Synthesis and Fabrication of Nanocrystals for NVM |
|
|
9 | (17) |
|
|
11 | (3) |
|
|
14 | (6) |
|
|
20 | (5) |
|
|
25 | (1) |
|
1.3 Characterization of Nanoparticles |
|
|
26 | (25) |
|
1.3.1 Microscopy Technique |
|
|
27 | (10) |
|
1.3.1.1 Electron microscopy |
|
|
27 | (5) |
|
1.3.1.2 Reflection high-energy electron diffraction |
|
|
32 | (1) |
|
1.3.1.3 Scanning probe microscopy |
|
|
33 | (4) |
|
1.3.2 X-Ray-Based Methods |
|
|
37 | (7) |
|
1.3.2.1 X-ray diffraction |
|
|
37 | (1) |
|
1.3.2.2 Small-angle X-ray scattering |
|
|
38 | (2) |
|
1.3.2.3 X-ray photoelectron spectroscopy |
|
|
40 | (3) |
|
1.3.2.4 X-ray absorption spectroscopy |
|
|
43 | (1) |
|
1.3.3 Light-Based Spectroscopic Techniques |
|
|
44 | (65) |
|
1.3.3.1 Light scattering techniques |
|
|
45 | (1) |
|
1.3.3.2 Ultraviolet/visible spectroscopy |
|
|
46 | (1) |
|
1.3.3.3 Photoluminescence spectroscopy |
|
|
47 | (2) |
|
1.3.3.4 Raman spectroscopy |
|
|
49 | (1) |
|
1.3.3.5 Fourier transform infrared spectroscopy |
|
|
50 | (1) |
|
|
51 | (24) |
2 Modeling and Simulation of Nanocrystal Flash Memory |
|
75 | (52) |
|
|
|
|
76 | (3) |
|
2.2 Developments in Nanocrystal Memory |
|
|
79 | (3) |
|
2.3 Model for Nanocrystal and Nitride-Trap Memory |
|
|
82 | (5) |
|
2.4 Memory Device Scaling with the Use of a Silicon Nanocrystal |
|
|
87 | (3) |
|
2.5 Modeling of Tunneling Currents |
|
|
90 | (6) |
|
2.6 Model for the Charging and Discharging Process |
|
|
96 | (5) |
|
2.7 Programming Time Model |
|
|
101 | (3) |
|
2.8 Growth of Metal (Au) Nanocrystals in High-K Dielectrics |
|
|
104 | (2) |
|
2.9 Retention Characteristics Model |
|
|
106 | (3) |
|
2.10 Tunneling Characteristics of Metal- Nanocrystal- and Semiconductor-Nanocrystal-Based Gate Dielectrics |
|
|
109 | (11) |
|
2.10.1 Fowler-Nordheim Tunneling |
|
|
114 | (1) |
|
|
115 | (5) |
|
|
120 | (7) |
3 Charge Trapping and High-K Nanocrystal Flash Memory |
|
127 | (46) |
|
|
|
3.1 Introduction to Charge Storage Nonvolatile Memory |
|
|
128 | (11) |
|
3.2 Evolution of Nanocrystal-Based CS-NVM |
|
|
139 | (6) |
|
3.3 Reliability Challenges of Nanocrystal-Based CS-NVM |
|
|
145 | (7) |
|
3.4 Technical Mitigations |
|
|
152 | (13) |
|
|
165 | (8) |
4 Silicon Nanocrystal Flash Memory |
|
173 | (26) |
|
|
|
|
|
174 | (1) |
|
4.2 Si NCs in Flash Memory |
|
|
175 | (9) |
|
4.2.1 Structure Development of a Si NC Floating Gate |
|
|
175 | (8) |
|
4.2.1.1 Si NC floating-gate story |
|
|
176 | (4) |
|
4.2.1.2 Preparation of Si NCs for flash memory |
|
|
180 | (3) |
|
4.2.2 Electrical Characteristics of Si Nanocrystal in Flash Memory |
|
|
183 | (1) |
|
4.3 Si Nanocrystal Trap Center Studied by Deep-Level Transient Spectroscopy |
|
|
184 | (8) |
|
4.4 Engineering for Improved Si Nanocrystal Flash Memory |
|
|
192 | (7) |
5 Synthesis, Characterization, and Memory Application of Germanium Nanocrystals in Dielectric Matrices |
|
199 | (64) |
|
|
|
|
200 | (3) |
|
5.2 Synthesis of Ge Nanocrystals |
|
|
203 | (13) |
|
5.2.1 Ge Atoms for Nanocrystal Growth |
|
|
203 | (2) |
|
5.2.2 Effect of Ge Concentration and Annealing Temperature |
|
|
205 | (5) |
|
5.2.3 Effect of Annealing Ambient |
|
|
210 | (1) |
|
5.2.4 Effect of an Oxide Barrier Layer |
|
|
211 | (2) |
|
5.2.5 Influence of Dielectric Matrices |
|
|
213 | (3) |
|
5.3 Characterizations of Ge Nanocrystals |
|
|
216 | (12) |
|
5.3.1 Photoluminescence Properties |
|
|
216 | (3) |
|
5.3.2 Electroluminescence Properties |
|
|
219 | (3) |
|
5.3.3 Stress in Ge Nanocrystals Embedded in Dielectrics |
|
|
222 | (6) |
|
5.4 Ge Nanocrystal-Based Floating-Gate Memory Devices |
|
|
228 | (25) |
|
5.4.1 Fabrication of Ge Nanocrystal Memory Structures |
|
|
228 | (3) |
|
5.4.2 Control of Nanocrystal Size |
|
|
231 | (6) |
|
5.4.3 Retention Properties |
|
|
237 | (5) |
|
|
242 | (3) |
|
5.4.5 Characterization Ge-Nanocrystal- Based Transistors |
|
|
245 | (8) |
|
|
253 | (10) |
6 Nanographene Flash Memory |
|
263 | (64) |
|
|
|
|
|
264 | (4) |
|
6.1.1 Graphene Fundamentals |
|
|
264 | (4) |
|
6.1.1.1 Structure and electronic properties of graphene |
|
|
264 | (3) |
|
6.1.1.2 Graphene nanostructures and graphene nanosheets |
|
|
267 | (1) |
|
6.2 Preparation/Synthesis of Graphene and Nanographene |
|
|
268 | (23) |
|
6.2.1 Graphene Thin-Film Preparation |
|
|
268 | (12) |
|
6.2.1.1 Reduced graphene oxide |
|
|
268 | (5) |
|
6.2.1.2 Chemical vapor depositions |
|
|
273 | (7) |
|
6.2.2 Synthetic Strategies for Nanographene |
|
|
280 | (17) |
|
|
281 | (6) |
|
6.2.2.2 Bottom-up methods |
|
|
287 | (4) |
|
6.3 Graphene-Based Flash Memory |
|
|
291 | (6) |
|
6.4 Graphene Nanostructures Flash Memory |
|
|
297 | (16) |
|
|
298 | (11) |
|
|
309 | (1) |
|
6.4.3 Retention Characteristics |
|
|
310 | (3) |
|
|
313 | (1) |
|
6.5 Graphene Memory Hybrids |
|
|
313 | (6) |
|
6.5.1 Flexible Transparent Flash Memory |
|
|
314 | (3) |
|
|
317 | (2) |
|
6.6 Conclusion and Prospects |
|
|
319 | (8) |
7 Data Recovery of Flash Memory |
|
327 | (42) |
|
Bernard Kasamani Shibwabo |
|
|
|
|
328 | (4) |
|
7.2 How Computers Store Information |
|
|
332 | (3) |
|
7.2.1 Kinds of Computer Memory |
|
|
332 | (1) |
|
|
333 | (2) |
|
|
335 | (10) |
|
7.3.1 Introduction to Flash Memory |
|
|
335 | (2) |
|
7.3.2 The Features of Flash Memory |
|
|
337 | (1) |
|
|
337 | (6) |
|
7.3.4 NAND and NOR Flash Memory |
|
|
343 | (2) |
|
|
345 | (3) |
|
7.4.1 Introduction to Data Recovery |
|
|
345 | (1) |
|
7.4.2 The Need for Data Recovery |
|
|
346 | (1) |
|
7.4.3 Data Extraction/Acquisition |
|
|
347 | (1) |
|
7.4.3.1 Data extraction tools |
|
|
347 | (1) |
|
7.4.3.2 Physical extraction |
|
|
348 | (1) |
|
7.5 Data Recovery in Flash Media |
|
|
348 | (18) |
|
7.5.1 Data Loss on Flash Media |
|
|
348 | (4) |
|
|
350 | (1) |
|
7.5.1.2 Bad block handling |
|
|
351 | (1) |
|
7.5.1.3 Life span/endurance |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (2) |
|
7.5.5 Flash Data Recovery Techniques |
|
|
356 | (14) |
|
7.5.5.1 Fundamental concepts |
|
|
356 | (2) |
|
7.5.5.2 The flash translation layer and flash data recovery |
|
|
358 | (2) |
|
7.5.5.3 Data recovery for data loss due to a virus attack |
|
|
360 | (2) |
|
7.5.5.4 Data recovery software |
|
|
362 | (4) |
|
7.5.5.5 Best practice for flash |
|
|
366 | (1) |
|
7.6 Windows User Laboratory Activities |
|
|
366 | (1) |
|
|
367 | (2) |
8 Nanocrystals in Resistive Random Access Memory |
|
369 | (80) |
|
|
|
|
370 | (19) |
|
|
370 | (3) |
|
8.1.2 Prototype NVM Technologies |
|
|
373 | (6) |
|
8.1.2.1 Ferroelectric random access memory |
|
|
373 | (2) |
|
8.1.2.2 Phase change memory |
|
|
375 | (1) |
|
8.1.2.3 Spin-transfer torque random access memory |
|
|
376 | (3) |
|
8.1.3 Emerging NVM Technologies |
|
|
379 | (10) |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
381 | (1) |
|
8.1.3.4 Macromolecular memory |
|
|
382 | (1) |
|
|
382 | (1) |
|
8.1.3.6 Resistive random access memory |
|
|
383 | (3) |
|
|
386 | (3) |
|
8.2 Mechanisms and Materials in RRAM |
|
|
389 | (19) |
|
8.2.1 Resistive Switching Mechanisms |
|
|
389 | (12) |
|
8.2.1.1 Electrochemical metallization type |
|
|
390 | (6) |
|
8.2.1.2 Valence change memory type |
|
|
396 | (4) |
|
8.2.1.3 Thermochemical reaction type |
|
|
400 | (1) |
|
|
401 | (7) |
|
8.2.2.1 Metal electrode layer |
|
|
401 | (4) |
|
|
405 | (1) |
|
8.2.2.3 Defect-related improvement of RRAM performance |
|
|
406 | (2) |
|
8.3 Applications of Nanocrystals in RRAM |
|
|
408 | (16) |
|
8.3.1 Improvement of Electrical Performance |
|
|
409 | (3) |
|
|
409 | (1) |
|
8.3.1.2 SET/RESET operation |
|
|
410 | (2) |
|
8.3.1.3 Reliability of RRAM devices |
|
|
412 | (1) |
|
8.3.2 Conductive Filament Formation Based on Nanocrystal Migration |
|
|
412 | (3) |
|
8.3.3 Charge Trapping Using NC |
|
|
415 | (3) |
|
8.3.4 Threshold Switching to Memory Switching |
|
|
418 | (6) |
|
8.4 Nanocrystals as the Seed Layer in RRAM |
|
|
424 | (14) |
|
8.4.1 Effect of Nanocrystals in the Resistive Switching Layer |
|
|
424 | (8) |
|
8.4.1.1 Colloidal nanocrystals as the switching layer |
|
|
425 | (2) |
|
8.4.1.2 Local electric field enhancement with nanocrystals |
|
|
427 | (1) |
|
8.4.1.3 Formation of homogeneous NCs for RRAM applications |
|
|
428 | (4) |
|
8.4.2 Bottom Electrode Modification |
|
|
432 | (19) |
|
8.4.2.1 Nanocrystal-based bottom electrode |
|
|
432 | (3) |
|
8.4.2.2 Nanopyramid-shaped bottom electrode |
|
|
435 | (2) |
|
8.4.2.3 Arc-shaped bottom electrode |
|
|
437 | (1) |
|
8.5 Summary and Future Scope |
|
|
438 | (11) |
9 Measurement Aspects of Nonvolatile Memory |
|
449 | (64) |
|
|
|
450 | (1) |
|
|
451 | (29) |
|
|
452 | (18) |
|
|
454 | (4) |
|
|
458 | (2) |
|
9.2.1.3 Device power supply |
|
|
460 | (1) |
|
|
461 | (2) |
|
9.2.1.5 Capture memory: data buffer memory |
|
|
463 | (2) |
|
9.2.1.6 Redundancy analysis processor |
|
|
465 | (1) |
|
9.2.1.7 Other remarks on flash testers |
|
|
465 | (5) |
|
9.2.2 DUT Built-In Test-Oriented Resources |
|
|
470 | (10) |
|
|
474 | (1) |
|
9.2.2.2 Threshold distribution |
|
|
475 | (5) |
|
|
480 | (12) |
|
|
481 | (9) |
|
|
490 | (2) |
|
9.4 Brief History of Flash |
|
|
492 | (1) |
|
|
493 | (1) |
|
|
493 | (1) |
|
|
494 | (2) |
|
9.8 Silicon Debug/Design Validation |
|
|
496 | (1) |
|
|
496 | (1) |
|
|
497 | (3) |
|
|
497 | (3) |
|
|
500 | (1) |
|
|
500 | (5) |
|
9.12.1 Product General Description |
|
|
501 | (1) |
|
9.12.2 Pin Name and Function |
|
|
501 | (1) |
|
9.12.3 Product Conceptual Schematic |
|
|
502 | (1) |
|
|
502 | (1) |
|
9.12.5 DC Characteristics |
|
|
503 | (1) |
|
9.12.6 AC Characteristics |
|
|
503 | (1) |
|
9.12.7 Endurance Characteristics |
|
|
504 | (1) |
|
9.12.8 Package Dimensions |
|
|
504 | (1) |
|
|
504 | (1) |
|
9.13 Datasheet Gray Areas |
|
|
505 | (1) |
|
9.14 Error Correction Code |
|
|
506 | (7) |
Index |
|
513 | |