Muutke küpsiste eelistusi

Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds [Kõva köide]

(University of Massachusetts, Amherst, USA)
  • Formaat: Hardback, 572 pages, kõrgus x laius: 234x156 mm, kaal: 907 g, 18 Tables, black and white; 141 Illustrations, black and white
  • Ilmumisaeg: 12-Aug-2014
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1482233150
  • ISBN-13: 9781482233155
Teised raamatud teemal:
  • Formaat: Hardback, 572 pages, kõrgus x laius: 234x156 mm, kaal: 907 g, 18 Tables, black and white; 141 Illustrations, black and white
  • Ilmumisaeg: 12-Aug-2014
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1482233150
  • ISBN-13: 9781482233155
Teised raamatud teemal:
Recent developments in nanoparticle and microparticle delivery systems are revolutionizing delivery systems in the food industry. These developments have the potential to solve many of the technical challenges involved in creating encapsulation, protection, and delivery of active ingredients, such as colors, flavors, preservatives, vitamins, minerals, and nutraceuticals. Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds explores various types of colloidal delivery systems available for encapsulating active ingredients, highlighting their relative advantages and limitations and their use.

Written by an international authority known for his clear and rigorous technical writing style, this book discusses the numerous kinds of active ingredients available and the issues associated with their encapsulation, protection, and delivery. The author takes a traditional colloid science approach and emphasizes the practical aspects of formulation of particulate- and emulsion-based delivery systems with food applications. He then covers the physicochemical and mechanical methods available for manufacturing colloidal particles, highlighting the importance of designing particles for specific applications.

The book includes chapters devoted specifically to the three major types of colloidal delivery systems available for encapsulating active ingredients in the food industry: surfactant-based, emulsion-based, and biopolymer-based. It then reviews the analytical tools available for characterizing the properties of colloidal delivery systems, presents the mathematical models for describing their properties, and highlights the factors to consider when selecting an appropriate delivery system for a particular application backed up by specific case studies.

Based on insight from the authors own experience, the book describes why delivery systems are needed, the important factors to consider when designing them, methods of characterizing them, and specific examples of the range of food-grade delivery systems available. It gives you the necessary knowledge, understanding, and appreciation of developments within the current research literature in this rapidly growing field and the confidence to perform reliable experimental investigations according to modern international standards.
Foreword xxi
Preface xxiii
Author xxv
1 Background and Context 1(36)
1.1 Introduction
1(5)
1.2 Terminology
6(1)
1.3 Active Ingredients and the Need for Encapsulation
7(4)
1.3.1 Flavors and Colors
7(1)
1.3.2 Antioxidants
8(1)
1.3.3 Antimicrobials
8(1)
1.3.4 Bioactive Lipids
8(1)
1.3.5 Bioactive Carbohydrates
9(1)
1.3.6 Bioactive Proteins
9(1)
1.3.7 Bioactive Minerals
10(1)
1.4 Challenges to Incorporating Active Ingredients in Foods
11(2)
1.4.1 Low Solubility
11(1)
1.4.2 Inappropriate Physical State
11(1)
1.4.3 Poor Physicochemical Stability
12(1)
1.4.4 Poor Biochemical Stability
12(1)
1.4.5 Poor Flavor Profile
12(1)
1.4.6 Poor Handling Characteristics
13(1)
1.5 Fabrication of Delivery Systems
13(10)
1.5.1 Surfactant-Based Systems
15(3)
1.5.2 Emulsion-Based Systems
18(3)
1.5.3 Biopolymer-Based Systems
21(1)
1.5.4 Hybrid Systems
22(1)
1.5.5 Nature-Inspired Systems
22(1)
1.6 Desirable Characteristics of Delivery Systems
23(2)
1.6.1 Food-Grade
23(1)
1.6.2 Economic Production
24(1)
1.6.3 Food Matrix Compatibility
24(1)
1.6.4 Protection against Chemical Degradation
24(1)
1.6.5 Loading Capacity, Encapsulation Efficiency, and Retention
24(1)
1.6.6 Delivery Mechanism
24(1)
1.6.7 Bioavailability/Bioactivity
25(1)
1.7 Release Mechanisms
25(4)
1.7.1 Diffusion
25(1)
1.7.2 Dissolution
26(1)
1.7.3 Erosion
26(1)
1.7.4 Fragmentation
26(1)
1.7.5 Swelling
27(1)
1.7.6 Designing Release Profiles
27(2)
1.8 Summary
29(1)
References
29(8)
2 Active Ingredients 37(42)
2.1 Introduction
37(1)
2.2 Lipid-Based Ingredients
37(15)
2.2.1 Neutral Oils
41(1)
2.2.2 Flavor and Essential Oils
41(1)
2.2.3 Oil-Soluble Colorants
42(1)
2.2.4 Lipophilic Nutraceuticals
43(8)
2.2.4.1 Polyunsaturated Lipids
44(1)
2.2.4.2 Fat-Soluble Antioxidants
45(1)
2.2.4.3 Fat-Soluble Vitamins
46(3)
2.2.4.4 Fat-Soluble Nutraceuticals
49(2)
2.2.5 Challenges to Delivery of Lipid-Based Ingredients
51(1)
2.3 Protein-Based Ingredients
52(4)
2.3.1 Proteins
53(1)
2.3.2 Peptides and Amino Acids
54(1)
2.3.3 Challenges to Delivery of Proteins, Peptides, and Amino acids
55(1)
2.4 Carbohydrate-Based Ingredients
56(4)
2.4.1 Polysaccharides
57(2)
2.4.1.1 Digestible Polysaccharides
57(1)
2.4.1.2 Indigestible Polysaccharides
58(1)
2.4.2 Monosaccharides and Oligosaccharides
59(1)
2.4.3 Challenges to Delivery of Carbohydrates
59(1)
2.5 Mineral-Based Ingredients
60(2)
2.5.1 Iron
60(1)
2.5.2 Zinc
61(1)
2.5.3 Calcium
61(1)
2.5.4 Challenges to Delivery of Minerals
61(1)
2.6 Microorganisms
62(3)
2.6.1 Probiotics
63(1)
2.6.2 Challenges to Delivery of Probiotics
64(1)
2.7 Summary
65(1)
References
65(14)
3 Particle Characteristics and Their Impact on Physicochemical Properties of Delivery Systems 79(44)
3.1 Introduction
79(1)
3.2 Particle Building Blocks
80(1)
3.2.1 Molecules, Particles, and Phases
80(1)
3.2.2 Molecular and Colloidal Interactions
81(1)
3.3 Particle Characteristics
81(18)
3.3.1 Composition
81(3)
3.3.2 Morphology
84(2)
3.3.3 Concentration
86(1)
3.3.4 Particle Physicochemical Properties
87(2)
3.3.4.1 Density
87(1)
3.3.4.2 Rheology
87(2)
3.3.4.3 Refractive Index
89(1)
3.3.5 Particle Dimensions
89(5)
3.3.5.1 Particle Size Distributions
90(1)
3.3.5.2 Mean and Standard Deviation
91(1)
3.3.5.3 Internal Dimensions
92(2)
3.3.6 Particle Charge
94(1)
3.3.7 Particle Interactions
94(2)
3.3.8 Loading Characteristics
96(2)
3.3.9 Release Characteristics
98(1)
3.4 Impact of Particle Properties on Physicochemical Properties
99(18)
3.4.1 Rheology and Texture
99(4)
3.4.2 Optical Properties and Appearance
103(2)
3.4.3 Stability and Shelf Life
105(8)
3.4.3.1 Gravitational Separation
106(1)
3.4.3.2 Particle Aggregation
107(4)
3.4.3.3 Ostwald Ripening
111(2)
3.4.4 Molecular Partitioning and Transport
113(11)
3.4.4.1 Molecular Partitioning
113(3)
3.4.4.2 Mass Transport Processes
116(1)
3.5 Summary
117(1)
References
118(5)
4 Mechanical Particle Fabrication Methods 123(26)
4.1 Introduction
123(1)
4.2 Homogenization Methods
124(9)
4.2.1 Higher-Shear Mixers
124(1)
4.2.2 Colloid Mills
125(1)
4.2.3 High-Pressure Valve Homogenizers
126(2)
4.2.4 Ultrasonic Homogenizers
128(2)
4.2.5 Microfluidization
130(1)
4.2.6 Membrane and Microchannel Homogenizers
131(2)
4.3 Atomization Methods
133(4)
4.3.1 Spray Drying
133(3)
4.3.2 Spray Chilling
136(1)
4.3.3 Rotary Disk Atomization
137(1)
4.3.4 Elect rospraying
137(1)
4.4 Milling Methods
137(1)
4.5 Extrusion Methods
138(2)
4.6 Coating Methods
140(2)
4.7 Supercritical Fluid Methods
142(1)
4.8 Summary
143(1)
References
143(6)
5 Surfactant-Based Delivery Systems 149(42)
5.1 Introduction
149(1)
5.2 Building Blocks: Surfactants
149(19)
5.2.1 Molecular Characteristics
150(3)
5.2.2 Physicochemical Properties
153(5)
5.2.2.1 Molecular Organization in Solution
153(2)
5.2.2.2 Critical Micelle Concentration
155(1)
5.2.2.3 Kraft Point
156(1)
5.2.2.4 Cloud Point
156(1)
5.2.2.5 Solubilization Capacity
157(1)
5.2.3 Surfactant Classification Schemes
158(7)
5.2.3.1 Bancroft's Rule
159(1)
5.2.3.2 Hydrophile-Lipophile Balance (HLB)
160(1)
5.2.3.3 Molecular Geometry
161(1)
5.2.3.4 Hydrophilic-Lipophilic Deviation
162(3)
5.2.3.5 Additional Factors
165(1)
5.2.4 Food-Grade Surfactants
165(3)
5.2.4.1 Mono- and Diglycerides
166(1)
5.2.4.2 Organic Acid Esters of Mono- and Diglycerides
166(1)
5.2.4.3 Polyol Esters of Fatty Acids
167(1)
5.2.4.4 Stearoyl Lactylate Salts
168(1)
5.2.4.5 Lecithins
168(1)
5.3 Micelle and Microemulsion Delivery Systems
168(6)
5.3.1 Composition and Structure
169(1)
5.3.2 Formation
170(1)
5.3.3 Properties
171(2)
5.3.3.1 Optical Properties
171(1)
5.3.3.2 Rheological Properties
171(1)
5.3.3.3 Stability
172(1)
5.3.3.4 Flavor
173(1)
5.3.4 Applications
173(1)
5.4 Liposome Delivery Systems
174(9)
5.4.1 Composition and Structure
174(2)
5.4.2 Formation
176(2)
5.4.2.1 Vesicle Fabrication
176(1)
5.4.2.2 Loading
177(1)
5.4.3 Properties
178(3)
5.4.3.1 Optical Properties
178(1)
5.4.3.2 Rheological Properties
178(1)
5.4.3.3 Stability
178(2)
5.4.3.4 Flavor
180(1)
5.4.3.5 Release Characteristics
180(1)
5.4.4 Applications
181(11)
5.4.4.1 Enzymes
181(1)
5.4.4.2 Nutraceuticals and Minerals
182(1)
5.4.4.3 Controlling Biological Fate
182(1)
5.4.4.4 Taste Masking
182(1)
5.4.4.5 Inhibiting Physicochemical Reactions
183(1)
5.5 Summary
183(1)
References
184(7)
6 Emulsion-Based Delivery Systems 191(74)
6.1 Introduction
191(1)
6.2 Building Blocks: Fat Droplets
192(6)
6.2.1 Droplet Concentration
193(1)
6.2.2 Particle Size
194(1)
6.2.3 Particle Charge
194(1)
6.2.4 Interfacial Characteristics
195(1)
6.2.5 Physical State
196(1)
6.2.6 Colloidal Interactions
196(2)
6.2.7 Controlling Droplet Characteristics for Improved Performance
198(1)
6.3 Physicochemical Properties of Emulsions
198(7)
6.3.1 Appearance
198(2)
6.3.2 Rheology
200(1)
6.3.3 Stability
201(3)
6.3.4 Molecular Distribution and Release Characteristics
204(1)
6.3.5 Implications for Design of Delivery Systems
204(1)
6.4 Emulsion-Based Delivery Systems
205(42)
6.4.1 Emulsions and Nanoemulsions
205(9)
6.4.1.1 Composition and Structure
205(3)
6.4.1.2 Formation
208(2)
6.4.1.3 Properties
210(2)
6.4.1.4 Applications
212(2)
6.4.2 Multiple Emulsions
214(6)
6.4.2.1 Composition and Structure
214(1)
6.4.2.2 Formation
215(1)
6.4.2.3 Properties
216(3)
6.4.2.4 Applications
219(1)
6.4.3 Multilayer Emulsions
220(9)
6.4.3.1 Composition and Structure
220(1)
6.4.3.2 Formation
220(4)
6.4.3.3 Properties
224(2)
6.4.3.4 Applications
226(3)
6.4.4 Solid Lipid Particles
229(5)
6.4.4.1 Composition and Structure
229(1)
6.4.4.2 Formation
229(2)
6.4.4.3 Properties
231(3)
6.4.4.4 Applications
234(1)
6.4.5 Filled Hydrogel Particles
234(7)
6.4.5.1 Composition and Structure
234(1)
6.4.5.2 Formation
235(3)
6.4.5.3 Properties
238(2)
6.4.5.4 Applications
240(1)
6.4.6 Microclusters
241(5)
6.4.6.1 Composition and Structure
241(1)
6.4.6.2 Formation
242(1)
6.4.6.3 Properties
243(1)
6.4.6.4 Applications
244(2)
6.4.7 Miscellaneous Systems
246(19)
6.4.7.1 Particle-Stabilized Emulsions
246(1)
6.4.7.2 Emulsified Microemulsions and Cubosomes
246(1)
6.4.7.3 Nanocrystal Suspensions
247(1)
6.5 Summary
247(1)
References
247(18)
7 Biopolymer-Based Delivery Systems 265(76)
7.1 Introduction
265(1)
7.2 Building Blocks: Biopolymers
265(22)
7.2.1 Proteins
267(9)
7.2.1.1 Molecular Conformation
267(3)
7.2.1.2 Electrical Characteristics
270(1)
7.2.1.3 Hydrophobic Characteristics
271(1)
7.2.1.4 Physical Interactions
272(1)
7.2.1.5 Chemical Reactivity
272(1)
7.2.1.6 Commonly Used Proteins
273(2)
7.2.1.7 Protein Selection
275(1)
7.2.2 Polysaccharides
276(11)
7.2.2.1 Molecular Conformation
276(2)
7.2.2.2 Electrical Characteristics
278(1)
7.2.2.3 Hydrophobic Characteristics
279(1)
7.2.2.4 Physical Interactions
279(1)
7.2.2.5 Chemical Reactivity
279(1)
7.2.2.6 Commonly Used Polysaccharides
280(6)
7.2.2.7 Polysaccharide Selection
286(1)
7.3 Molecular Interactions
287(12)
7.3.1 Electrostatic Interactions
288(2)
7.3.2 Hydrogen Bonding
290(1)
7.3.3 Hydrophobic Interactions
290(1)
7.3.4 Excluded Volume Effects
291(1)
7.3.5 Covalent Interactions
292(1)
7.3.6 Assembling Biopolymer Structures
293(6)
7.3.6.1 Single Biopolymer Systems
294(1)
7.3.6.2 Mixed Biopolymer Systems
295(4)
7.4 Physiochemical Methods for Biopolymer Particle Formation
299(6)
7.4.1 Formation of Molecular Complexes
300(2)
7.4.1.1 Individual Biopolymer Molecules
300(1)
7.4.1.2 Biopolymer Molecular Clusters: Single Biopolymer Type
301(1)
7.4.1.3 Biopolymer Molecular Clusters: Mixed Biopolymer Type
302(1)
7.4.2 Formation of Hydrogel Particles
302(3)
7.4.2.1 Hydrogel Particles: Single Biopolymer Type
302(2)
7.4.2.2 Hydrogel Particles: Mixed Biopolymer Type
304(1)
7.5 Mechanical Methods for Biopolymer Particle Formation
305(7)
7.5.1 Extrusion Methods
306(1)
7.5.2 Microfluidic Methods
307(1)
7.5.3 Spray Drying and Other Drying Methods
308(1)
7.5.4 Antisolvent Precipitation
309(1)
7.5.5 Emulsion Templating
309(1)
7.5.6 Shearing Methods
310(2)
7.5.7 Molding Techniques
312(1)
7.6 Biopolymer Particle Properties
312(12)
7.6.1 Particle Structure
313(1)
7.6.1.1 External Structure: Particle Dimension and Morphology
313(1)
7.6.1.2 Internal Structure
313(1)
7.6.2 Particle Electrical Characteristics
314(2)
7.6.3 Particle Physicochemical Properties
316(8)
7.6.3.1 Particle Integrity and Environmental Responsiveness
316(1)
7.6.3.2 Optical Properties
316(2)
7.6.3.3 Rheological Properties
318(1)
7.6.3.4 Stability
319(3)
7.6.3.5 Release Characteristics
322(2)
7.7 Potential Applications
324(3)
7.7.1 Encapsulation and Protection
324(1)
7.7.2 Controlled Release
325(1)
7.7.3 Lightening Agents
325(1)
7.7.4 Texture Modification
326(1)
7.7.5 Fat Replacement
326(1)
7.8 Summary
327(1)
References
327(14)
8 Delivery System Characterization Methods 341(60)
8.1 Introduction
341(1)
8.2 Particle Characteristics
342(21)
8.2.1 Particle Concentration
342(1)
8.2.2 Particle Morphology and Organization
342(9)
8.2.2.1 Optical Microscopy
343(3)
8.2.2.2 Electron Microscopy
346(3)
8.2.2.3 Atomic Force Microscopy
349(1)
8.2.2.4 Practical Considerations
349(2)
8.2.3 Particle Size
351(7)
8.2.3.1 Static Light Scattering
352(1)
8.2.3.2 Dynamic Light Scattering
353(1)
8.2.3.3 Optical Pulse Counting
354(1)
8.2.3.4 Electrical Pulse Counting
355(1)
8.2.3.5 Gravitational Settling and Centrifugation
356(1)
8.2.3.6 Miscellaneous Techniques
357(1)
8.2.3.7 Practical Considerations
357(1)
8.2.4 Particle Charge
358(3)
8.2.4.1 Microelectrophoresis
359(1)
8.2.4.2 Electroacoustics
360(1)
8.2.4.3 Practical Considerations
361(1)
8.2.5 Particle Physical State
361(2)
8.2.5.1 Dilatometry
362(1)
8.2.5.2 Differential Scanning Calorimetry
362(1)
8.2.5.3 Nuclear Magnetic Resonance
362(1)
8.2.5.4 Ultrasonics
362(1)
8.2.5.5 X-Ray Analysis
362(1)
8.2.5.6 Microscopy
363(1)
8.2.5.7 Practical Considerations
363(1)
8.3 Bulk Physicochemical Properties
363(16)
8.3.1 Optical Properties
363(2)
8.3.2 Rheology
365(2)
8.3.2.1 Shear Testing
365(1)
8.3.2.2 Compression Testing
366(1)
8.3.2.3 Compression-Shear Testing
366(1)
8.3.3 Flavor
367(4)
8.3.3.1 Analysis of Volatile Flavors
367(2)
8.3.3.2 Analysis of Nonvolatile Flavors
369(1)
8.3.3.3 Sensory Analysis
370(1)
8.3.4 Stability
371(8)
8.3.4.1 Particle Location Changes: Gravitational Separation
371(6)
8.3.4.2 Particle Size Changes: Aggregation, Ostwald Ripening, and Dissociation
377(1)
8.3.4.3 Environmental Stress Tests
377(2)
8.4 Protection, Retention, and Release Characteristics
379(4)
8.4.1 Protection
379(2)
8.4.2 Retention and Release
381(2)
8.4.2.1 Nondestructive Methods
381(1)
8.4.2.2 Destructive Methods
382(1)
8.5 Biological Fate
383(8)
8.5.1 In Vitro Approaches
384(4)
8.5.1.1 Passage through GIT
384(2)
8.5.1.2 Absorption
386(2)
8.5.2 In Vivo Approaches
388(1)
8.5.3 In Vitro versus In Vivo Correlations
388(1)
8.5.4 Measurement of Changes in Delivery System Properties
389(2)
8.6 Summary
391(1)
References
391(10)
9 Selection of Delivery Systems: Case Studies 401(52)
9.1 Introduction
401(3)
9.1.1 Design Criteria for Colloidal Delivery Systems
401(3)
9.1.1.1 Economics
401(1)
9.1.1.2 Ease and Reliability of Fabrication
402(1)
9.1.1.3 Transportation and Storage
402(1)
9.1.1.4 Labeling and Marketing
402(1)
9.1.1.5 Legislation
402(1)
9.1.1.6 Patent Status
403(1)
9.1.1.7 Shelf Life
403(1)
9.1.1.8 Matrix Compatibility
403(1)
9.1.1.9 Loading, Retention, and Release Characteristics
404(1)
9.1.2 Identification of Appropriate Colloidal Delivery Systems
404(1)
9.2 Nutraceutical-Fortified Soft Drinks
404(7)
9.2.1 Design Criteria
405(4)
9.2.1.1 Loading and Retention Characteristics
405(1)
9.2.1.2 Influence on Physicochemical and Sensory Properties of Product
405(1)
9.2.1.3 Product Stability
406(2)
9.2.1.4 Storage Form
408(1)
9.2.2 Potential Delivery Systems
409(2)
9.2.2.1 Surfactant-Based Delivery Systems
409(1)
9.2.2.2 Emulsion-Based Delivery Systems
410(1)
9.2.2.3 Biopolymer-Based Delivery Systems
411(1)
9.3 Dairy-Based Functional Beverages Designed to Enhance Nutraceutical Bioavailability
411(10)
9.3.1 Design Criteria
412(5)
9.3.1.1 Loading and Retention Characteristics
412(1)
9.3.1.2 Influence on Physicochemical and Sensory Properties of Product
412(1)
9.3.1.3 Product Stability
413(1)
9.3.1.4 Bioavailability Enhancement
414(3)
9.3.2 Potential Delivery Systems
417(4)
9.3.2.1 Surfactant-Based Delivery Systems
417(1)
9.3.2.2 Emulsion-Based Delivery Systems
418(2)
9.3.2.3 Biopolymer-Based Delivery Systems
420(1)
9.4 Delivery of Probiotics to the Colon
421(7)
9.4.1 Design Criteria
422(3)
9.4.1.1 Loading and Retention Characteristics
422(1)
9.4.1.2 Influence on Physicochemical and Sensory Properties of Product
422(1)
9.4.1.3 Product Stability
422(1)
9.4.1.4 Maintain Viability within Foods
423(1)
9.4.1.5 Maintain Viability within the GIT
423(1)
9.4.1.6 Release Probiotics within the Large Intestine
424(1)
9.4.2 Potential Delivery Systems
425(3)
9.4.2.1 Surfactant-Based Delivery Systems
425(1)
9.4.2.2 Emulsion-Based Delivery Systems
425(1)
9.4.2.3 Biopolymer-Based Delivery Systems
426(2)
9.5 Controlled Flavor Release
428(6)
9.5.1 Design Criteria
429(1)
9.5.1.1 Loading and Retention Characteristics
429(1)
9.5.1.2 Influence on Physicochemical and Sensory Properties of Product
429(1)
9.5.1.3 Product Stability
429(1)
9.5.1.4 Flavor Release Profile
430(1)
9.5.2 Potential Delivery Systems
430(4)
9.5.2.1 Surfactant-Based Delivery Systems
431(1)
9.5.2.2 Emulsion-Based Delivery Systems
431(2)
9.5.2.3 Biopolymer-Based Delivery Systems
433(1)
9.6 Protection of Lipophilic Active Agents against Oxidation
434(8)
9.6.1 Design Criteria
435(2)
9.6.1.1 Loading and Retention Characteristics
435(1)
9.6.1.2 Influence on Physicochemical and Sensory Properties of Product
435(1)
9.6.1.3 Product Stability
435(2)
9.6.2 Potential Delivery Systems
437(16)
9.6.2.1 Surfactant-Based Delivery Systems
437(1)
9.6.2.2 Emulsion-Based Delivery Systems
438(3)
9.6.2.3 Biopolymer-Based Delivery Systems
441(1)
9.7 Summary
442(1)
References
442(11)
10 Key Physicochemical Concepts 453(70)
10.1 Introduction
453(1)
10.2 Physical States and Phase Transitions
453(19)
10.2.1 Physical States
454(2)
10.2.1.1 Thermodynamics
454(1)
10.2.1.2 Practical Implications
454(2)
10.2.2 Crystallization and Melting
456(8)
10.2.2.1 Supercooling
456(1)
10.2.2.2 Nucleation
456(4)
10.2.2.3 Crystal Growth
460(1)
10.2.2.4 Crystal Morphology and Structure
461(2)
10.2.2.5 Melting
463(1)
10.2.3 Crystallization and Dissolution
464(8)
10.2.3.1 Saturation
464(1)
10.2.3.2 Supersaturation
465(2)
10.2.3.3 Dissolution Rate
467(1)
10.2.3.4 Temperature Dependence of Dissolution
468(1)
10.2.3.5 Dissolution in Multiphase Systems
469(2)
10.2.3.6 Nucleation and Crystal Growth
471(1)
10.3 Partitioning Phenomenon
472(8)
10.3.1 Equilibrium Partitioning Coefficients
472(2)
10.3.2 Solute Partitioning in Delivery Systems
474(6)
10.3.2.1 Solute Partitioning below the Saturation Limit
474(2)
10.3.2.2 Solute Partitioning above the Saturation Level
476(1)
10.3.2.3 Partitioning of Volatile Solutes
477(2)
10.3.2.4 Influence of Particle Size on Solubility
479(1)
10.4 Mass Transport Processes
480(3)
10.4.1 Diffusion
480(2)
10.4.2 Convection
482(1)
10.5 Modeling Release Profiles from Colloidal Delivery Systems
483(12)
10.5.1 Diffusion
483(8)
10.5.1.1 Release from Homogeneous Spheres
483(4)
10.5.1.2 Release from Homogeneous Spheres Containing Insoluble Active Ingredients
487(1)
10.5.1.3 Release from Porous Polymeric Spheres
487(2)
10.5.1.4 Release from Coated Spheres
489(1)
10.5.1.5 Release from Heterogeneous Spheres
490(1)
10.5.2 Particle Dissolution
491(1)
10.5.3 Particle Swelling
492(1)
10.5.4 Particle Matrix Degradation
493(1)
10.5.5 Particle Matrix Fragmentation
494(1)
10.5.6 Establishing Release Mechanisms
495(1)
10.6 Modeling Particle Aggregation
495(7)
10.6.1 Colloidal Interactions
495(6)
10.6.1.1 van der Waals Interactions
496(1)
10.6.1.2 Steric Interactions
496(1)
10.6.1.3 Electrostatic Interactions
497(1)
10.6.1.4 Hydrophobic Interactions
498(1)
10.6.1.5 Depletion Interactions
499(1)
10.6.1.6 Overall Interactions
499(2)
10.6.2 Calculation of Aggregation Kinetics
501(1)
10.7 Modeling Bioavailability of Bioactives in the GIT
502(12)
10.7.1 Release of Bioactive Components
502(5)
10.7.1.1 Mouth
504(1)
10.7.1.2 Stomach
504(1)
10.7.1.3 Small Intestine
505(2)
10.7.1.4 Colon
507(1)
10.7.2 Absorption of Bioactive Components
507(7)
10.7.2.1 Absorption of Particles
508(3)
10.7.2.2 Bioactive Absorption
511(3)
10.8 Summary
514(1)
References
514(9)
Index 523
David Julian McClements is a Professor at the Department of Food Science at the University of Massachusetts. He specializes in the areas of food biopolymers and colloids, and in particular on the development of food-based structured delivery systems for bioactive components. Dr McClements received his Ph.D. in Food Science (1989) at the University of Leeds (United Kingdom). He then did Post Doctoral Research at the University of Leeds, University of California (Davis) and University College Cork (Ireland). Dr McClements is the sole author of the first and second editions of "Food Emulsions: Principles, Practice and Techniques", co-author of "Advances in Food Colloids" with Prof. Eric Dickinson, and co-editor of "Developments in Acoustics and Ultrasonics", "Understanding and Controlling the Microstructure of Complex Foods", "Designing Functional Foods" and "Oxidation in Foods and Beverages (Volumes 1 and 2)" and "Encapsulation and Delivery Systems for Food Ingredients and Nutraceuticals". In addition, he has published over 460 scientific articles in peer-reviewed journals (with a H-index of 55). Dr McClements has previously received awards from the American Chemical Society, American Oil Chemists Society, Institute of Food Technologists, and University of Massachusetts in recognition of his scientific achievements. His research has been funded by grants from the United States Department of Agriculture, National Science Foundation, US Department of Commerce, Dairy Management Incorporated, and the food industry. He is member of the editorial boards of a number of journals, and has organized workshops, symposia and conferences in the field of food colloids, food emulsions, and delivery systems.