Muutke küpsiste eelistusi

Natural Convection in Superposed Fluid-Porous Layers 2014 ed. [Pehme köide]

  • Formaat: Paperback / softback, 80 pages, kõrgus x laius: 235x155 mm, kaal: 1533 g, 45 Illustrations, black and white; X, 80 p. 45 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Thermal Engineering and Applied Science
  • Ilmumisaeg: 18-Jul-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461465753
  • ISBN-13: 9781461465751
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 80 pages, kõrgus x laius: 235x155 mm, kaal: 1533 g, 45 Illustrations, black and white; X, 80 p. 45 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Thermal Engineering and Applied Science
  • Ilmumisaeg: 18-Jul-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461465753
  • ISBN-13: 9781461465751
Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.
1 Introduction
1(4)
2 Literature Review
5(10)
2.1 Current Status of Research
5(8)
2.2 Conclusion
13(2)
3 Mathematical Formulation and Numerical Solution
15(12)
3.1 Governing Equations
15(3)
3.2 Boundary and Initial Conditions
18(2)
3.3 One-Domain Formulation
20(5)
3.4 Verification of the Numerical Scheme
25(2)
4 Numerical Prediction of Convection
27(32)
4.1 Effect of Heater Size
27(7)
4.2 Effect of Porous Sub-Layer Height
34(4)
4.3 Porous Structure Effects
38(4)
4.4 Effect of Aspect Ratio
42(4)
4.5 Effect of Conductivity Ratio
46(5)
4.6 Prandtl Number Effect
51(2)
4.7 Evolution of Temperature Fields
53(1)
4.8 Summary
54(5)
5 Measurement of Heat Transfer Coefficients
59(8)
5.1 Design of the Experiment
59(3)
5.2 Measured Nussejt Numbers
62(3)
5.3 Temperature Profiles
65(2)
6 Discussion
67(10)
6.1 Comparison of Numerical and Experimental Results
67(8)
6.2 Summary
75(2)
References 77
Aniruddha Bagchi, University of Minnesota, bagch004@umn.edu Francis A. Kulacki, University of Minnesota, kulacki@me.umn.edu