Muutke küpsiste eelistusi

Nature-Inspired Optimization Methodologies in Biomedical and Healthcare 2023 ed. [Kõva köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 293 pages, kõrgus x laius: 235x155 mm, kaal: 635 g, 77 Illustrations, color; 34 Illustrations, black and white; XVIII, 293 p. 111 illus., 77 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 233
  • Ilmumisaeg: 15-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031175433
  • ISBN-13: 9783031175435
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 293 pages, kõrgus x laius: 235x155 mm, kaal: 635 g, 77 Illustrations, color; 34 Illustrations, black and white; XVIII, 293 p. 111 illus., 77 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 233
  • Ilmumisaeg: 15-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031175433
  • ISBN-13: 9783031175435

This book introduces a variety of well-proven and newly developed nature-inspired optimization algorithms solving a wide range of real-life biomedical and healthcare problems. Few solo and hybrid approaches are demonstrated in a lucid manner for the effective integration and finding solution for a large-scale complex healthcare problem. In the present bigdata-based computing scenario, nature-inspired optimization techniques present adaptive mechanisms that permit the understanding of complex data and altering environments. This book is a voluminous collection for the confront faced by the healthcare institutions and hospitals for practical analysis, storage, and data analysis. It explores the distinct nature-inspired optimization-based approaches that are able to handle more accurate outcomes for the current biomedical and healthcare problems. In addition to providing a state-of-the-art and advanced intelligent methods, it also enlightens an insight for solving diversified healthcare problems such as cancer and diabetes.


Nature-Inspired Optimization Algorithms: Past to Present.- Preventing
the early spread of infectious diseases using Particle Swarm
Optimization.- Optimized gradient boosting tree-based model for obesity level
prediction from patients physical condition and eating habits.