Muutke küpsiste eelistusi

Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals [Kõva köide]

  • Formaat: Hardback, 456 pages, kõrgus x laius x paksus: 244x163x28 mm, kaal: 762 g
  • Sari: Wiley Series in Pure and Applied Optics
  • Ilmumisaeg: 07-Dec-2012
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 047090724X
  • ISBN-13: 9780470907245
Teised raamatud teemal:
  • Formaat: Hardback, 456 pages, kõrgus x laius x paksus: 244x163x28 mm, kaal: 762 g
  • Sari: Wiley Series in Pure and Applied Optics
  • Ilmumisaeg: 07-Dec-2012
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 047090724X
  • ISBN-13: 9780470907245
Teised raamatud teemal:
Since the field of nematonics is relatively new, there is a need for a comprehensive introduction to nematonics theory and application. Nematonics Spatial Optical Solitons in Nematic Liquid Crystals breaks barriers of the field by being the first book of its kind to introduce the fundamentals, basic features and models, potential applications and novel phenomena and its important applications in liquid crystal technology. Recognized leader in the field Gaetano Assanto outlines the peculiar characteristics of nematicons and the promise they have for the future growth of this captivating new field.
Preface xv
Acknowledgments xvii
Contributors xix
Chapter 1 Nematicons
1(36)
Gaetano Assanto
Alessandro Alberucci
Armando Piccardi
1.1 Introduction
1(3)
1.1.1 Nematic Liquid Crystals
1(2)
1.1.2 Nonlinear Optics and Solitons
3(1)
1.1.3 Initial Results on Light Self-Focusing in Liquid Crystals
3(1)
1.2 Models
4(9)
1.2.1 Scalar Perturbative Model
5(4)
1.2.2 Anisotropic Perturbative Model
9(4)
1.3 Numerical Simulations
13(4)
1.3.1 Nematicon Profile
13(1)
1.3.2 Gaussian Input
14(3)
1.4 Experimental Observations
17(14)
1.4.1 Nematicon-Nematicon Interactions
22(4)
1.4.2 Modulational Instability
26(5)
1.5 Conclusions
31(6)
References
33(4)
Chapter 2 Features of Strongly Nonlocal Spatial Solitons
37(34)
Qi Guo
Wei Hu
Dongmei Deng
Daquan Lu
Shigen Ouyang
2.1 Introduction
37(1)
2.2 Phenomenological Theory of Strongly Nonlocal Spatial Solitons
38(11)
2.2.1 The Nonlinearly Induced Refractive Index Change of Materials
38(1)
2.2.2 From the Nonlocal Nonlinear Schrodinger Equation to the Snyder-Mitchell Model
39(3)
2.2.3 An Accessible Soliton of the Snyder-Mitchell Model
42(3)
2.2.4 Breather and Soliton Clusters of the Snyder-Mitchell Model
45(1)
2.2.5 Complex-Variable-Function Gaussian Breathers and Solitons
46(1)
2.2.6 Self-Induced Fractional Fourier Transform
47(2)
2.3 Nonlocal Spatial Solitons in Nematic Liquid Crystals
49(12)
2.3.1 Voltage-Controllable Characteristic Length of NLC
50(2)
2.3.2 Nematicons as Strongly Nonlocal Spatial Solitons
52(2)
2.3.3 Nematicon-Nematicon Interactions
54(7)
2.4 Conclusion
61(10)
Appendix 2.A Proof of the Equivalence of the Snyder-Mitchell Model (Eq. 2.16) and the Strongly Nonlocal Model (Eq. 2.11)
61(1)
Appendix 2.B Perturbative Solution for a Single Soliton of the NNLSE (Eq. 2.4) in NLC
62(4)
References
66(5)
Chapter 3 Theoretical Approaches to Nonlinear Wave Evolution in Higher Dimensions
71(40)
Antonmaria A. Minzoni
Noel F. Smyth
3.1 Simple Example of Multiple Scales Analysis
71(6)
3.2 Survey of Perturbation Methods for Solitary Waves
77(4)
3.3 Linearized Perturbation Theory for Nonlinear Schrodinger Equation
81(2)
3.4 Modulation Theory: Nonlinear Schrodinger Equation
83(5)
3.5 Radiation Loss
88(3)
3.6 Solitary Waves in Nematic Liquid Crystals: Nematicons
91(5)
3.7 Radiation Loss for The Nematicon Equations
96(5)
3.8 Choice of Trial Function
101(4)
3.9 Conclusions
105(6)
Appendix 3.A Integrals
106(1)
Appendix 3.B Shelf Radius
107(1)
References
108(3)
Chapter 4 Soliton Families in Strongly Nonlocal Media
111(28)
Wei-Ping Zhong
Milivoj R. Belic
4.1 Introduction
111(1)
4.2 Mathematical Models
112(3)
4.2.1 General
112(1)
4.2.2 Nonlocality Through Response Function
113(2)
4.3 Soliton Families in Strongly Nonlocal Nonlinear Media
115(18)
4.3.1 One-Dimensional Hermite-Gaussian Spatial Solitons
115(1)
4.3.2 Two-Dimensional Laguerre-Gaussian Soliton Families
116(2)
4.3.3 Accessible Solitons in the General Model of Beam Propagation in NLC
118(7)
4.3.4 Two-Dimensional Self-Similar Hermite-Gaussian Spatial Solitons
125(1)
4.3.5 Two-Dimensional Whittaker Solitons
126(7)
4.4 Conclusions
133(6)
References
135(4)
Chapter 5 External Control of Nematicon Paths
139(20)
Armando Piccardi
Alessandro Alberucci
Gaetano Assanto
5.1 Introduction
139(1)
5.2 Basic Equations
140(2)
5.3 Nematicon Control with External Light Beams
142(5)
5.3.1 Interaction with Circular Spots
143(2)
5.3.2 Dielectric Interfaces
145(1)
5.3.3 Comments
146(1)
5.4 Voltage Control of Nematicon Walk-Off
147(5)
5.4.1 Out-of-Plane Steering of Nematicons
147(2)
5.4.2 In-Plane Steering of Nematicon
149(3)
5.5 Voltage-Defined Interfaces
152(4)
5.6 Conclusions
156(3)
References
156(3)
Chapter 6 Dynamics of Optical Solitons in Bias-Free Nematic Liquid Crystals
159(18)
Yana V. Izdebskaya
Anton S. Desyatnikov
Yuri S. Kivshar
6.1 Summary
159(1)
6.2 Introduction
159(1)
6.3 From One to Two Nematicons
160(2)
6.4 Counter-Propagating Nematicons
162(3)
6.5 Interaction of Nematicons with Curved Surfaces
165(2)
6.6 Multimode Nematicon-Induced Waveguides
167(3)
6.7 Dipole Azimuthons and Charge-Flipping
170(2)
6.8 Conclusions
172(5)
References
173(4)
Chapter 7 Interaction of Nematicons and Nematicon Clusters
177(32)
Catherine Garcia-Reimbert
Antonmaria A. Minzoni
Noel F. Smyth
7.1 Introduction
177(2)
7.2 Gravitation of Nematicons
179(5)
7.3 In-Plane Interaction of Two-Color Nematicons
184(6)
7.4 Multidimensional Clusters
190(9)
7.5 Vortex Cluster Interactions
199(6)
7.6 Conclusions
205(4)
Appendix: Integrals
206(1)
References
206(3)
Chapter 8 Nematicons in Light Valves
209(24)
Stefania Residori
Umberto Bortolozzo
Armando Piccardi
Alessandro Alberucci
Gaetano Assanto
8.1 Introduction
209(1)
8.2 Reorientational Kerr Effect and Soliton Formation in Nematic Liquid Crystals
210(2)
8.2.1 Optically Induced Reorientational Nonlinearity
211(1)
8.2.2 Spatial Solitons in Nematic Liquid Crystals
211(1)
8.3 Liquid Crystal Light Valves
212(4)
8.3.1 Cell Structure and Working Principle
213(2)
8.3.2 Optical Addressing in Transverse Configurations
215(1)
8.4 Spatial Solitons in Light Valves
216(4)
8.4.1 Stable Nematicons: Self-Guided Propagation in the Longitudinal Direction
216(2)
8.4.2 Tuning the Soliton Walk-Off
218(2)
8.5 Soliton Propagation in 3D Anisotropic Media: Model and Experiment
220(4)
8.5.1 Optical Control of Nematicon Trajectories
224(1)
8.6 Soliton Gating and Switching by External Beams
224(3)
8.7 Conclusions and Perspectives
227(6)
References
229(4)
Chapter 9 Propagation of Light Confined via Thermo-Optical Effect in Nematic Liquid Crystals
233(22)
Marc Warenghem
Jean-Francois Blach
Jean-Francois Henninot
9.1 Introduction
233(2)
9.2 First Observation in NLC
235(5)
9.3 Characterization and Nonlocality Measurement
240(6)
9.4 Thermal Versus Orientational Self-Waveguides
246(2)
9.5 Applications
248(2)
9.5.1 Bent Waveguide
248(1)
9.5.2 Fluorescence Recovery
249(1)
9.6 Conclusions
250(5)
References
252(3)
Chapter 10 Discrete Light Propagation in Arrays of Liquid Crystalline Waveguides
255(24)
Katarzyna A. Rutkowska
Gaetano Assanto
Miroslaw A. Karpierz
10.1 Introduction
255(1)
10.2 Discrete Systems
256(2)
10.3 Waveguide Arrays in Nematic Liquid Crystals
258(5)
10.4 Discrete Diffraction and Discrete Solitons
263(2)
10.5 Optical Multiband Vector Breathers
265(2)
10.6 Nonlinear Angular Steering
267(1)
10.7 Landau-Zener Tunneling
268(2)
10.8 Bloch Oscillations
270(2)
10.9 Conclusions
272(7)
References
273(6)
Chapter 11 Power-Dependent Nematicon Self-Routing
279(30)
Alessandro Alberucci
Armando Piccardi
Gaetano Assanto
11.1 Introduction
279(1)
11.2 Nematicons: Governing Equations
280(7)
11.2.1 Perturbative Regime
282(2)
11.2.2 Highly Nonlinear Regime
284(1)
11.2.3 Simplified (1 + 1)D Model in a Planar Cell
285(2)
11.3 Single-Hump Nematicon Profiles
287(3)
11.3.1 (2 + 1)D Complete Model
288(1)
11.3.2 (1 + 1)D Simplified Model
289(1)
11.4 Actual Experiments: Role of Losses
290(3)
11.4.1 BPM (1 + 1)D Simulations
291(1)
11.4.2 Experiments
292(1)
11.5 Nematicon Self-Steering in Dye-Doped NLC
293(5)
11.6 Boundary Effects
298(4)
11.7 Nematicon Self-Steering Through Interaction with Linear Inhomogeneities
302(3)
11.7.1 Interfaces: Goos-Hanchen Shift
303(1)
11.7.2 Finite-Size Defects: Nematicon Self-Escape
304(1)
11.8 Conclusions
305(4)
References
306(3)
Chapter 12 Twisted and Chiral Nematicons
309(18)
Urszula A. Laudyn
Miroslaw A. Karpierz
12.1 Introduction
309(1)
12.2 Chiral and Twisted Nematics
310(2)
12.3 Theoretical Model
312(2)
12.4 Experimental Results
314(7)
12.4.1 Nematicons in a Single Layer
314(1)
12.4.2 Asymmetric Configuration
315(2)
12.4.3 Multilayer Propagation
317(1)
12.4.4 Influence of an External Electric Field
317(2)
12.4.5 Guiding Light by Light
319(1)
12.4.6 Nematicon Interaction
319(2)
12.5 Discrete Diffraction
321(2)
12.6 Conclusions
323(4)
References
323(4)
Chapter 13 Time Dependence of Spatial Solitons in Nematic Liquid Crystals
327(20)
Jeroen Beeckman
Kristiaan Neyts
13.1 Introduction
327(1)
13.2 Temporal Behavior of Different Nonlinearities and Governing Equations
328(5)
13.2.1 Reorientational Nonlinearity
328(3)
13.2.2 Thermal Nonlinearity
331(2)
13.2.3 Other Nonlinearities
333(1)
13.3 Formation of Reorientational Solitons
333(11)
13.3.1 Bias Voltage Switching Time
334(2)
13.3.2 Soliton Formation Time
336(1)
13.3.3 Experimental Observation of Soliton Formation
337(4)
13.3.4 Influence of Flow Effects
341(3)
13.4 Conclusions
344(3)
References
344(3)
Chapter 14 Spatiotemporal Dynamics and Light Bullets in Nematic Liquid Crystals
347(14)
Marco Peccianti
14.1 Introduction
347(2)
14.1.1 (2 + 1 + 1)D Nonlinear Wave Propagation in Kerr Media
348(1)
14.2 Optical Propagation Under Multiple Nonlinear Contributions
349(2)
14.2.1 Multiple Nonlinearities and Space-Time Decoupling of the Nonlinear Dynamics
349(1)
14.2.2 Suitable Excitation Conditions
350(1)
14.3 Accessible Light Bullets
351(4)
14.3.1 From Nematicons to Spatiotemporal Solitons
351(2)
14.3.2 Experimental Conditions for Accessible Bullets Observation
353(2)
14.4 Temporal Modulation Instability in Nematicons
355(1)
14.5 Soliton-Enhanced Frequency Conversion
355(2)
14.6 Conclusions
357(4)
References
358(3)
Chapter 15 Vortices in Nematic Liquid Crystals
361(30)
Antonmaria A. Minzoni
Luke W. Sciberras
Noel F. Smyth
Annette L. Worthy
15.1 Introduction
361(3)
15.2 Stabilization of Vortices in Nonlocal, Nonlinear Media
364(9)
15.3 Vortex in a Bounded Cell
373(5)
15.4 Stabilization of Vortices by Vortex-Beam Interaction
378(4)
15.5 Azimuthally Dependent Vortices
382(5)
15.6 Conclusions
387(4)
References
389(2)
Chapter 16 Dispersive Shock Waves in Reorientational and Other Optical Media
391(20)
Tim R. Marchant
16.1 Introduction
391(1)
16.2 Governing Equations and Modulational Instability
392(2)
16.3 Existing Experimental and Numerical Results
394(2)
16.4 Analytical Solutions for Defocusing Equations
396(2)
16.5 Analytical Solutions for Focusing Equations
398(8)
16.5.1 The 1 + 1 Dimensional Semianalytical Soliton
400(2)
16.5.2 Uniform Soliton Theory
402(1)
16.5.3 Comparisons with Numerical Solutions
403(3)
16.6 Conclusions
406(5)
References
407(4)
Index 411
GAETANO ASSANTO, PhD, is Professor of Optoelectronics at the University of Rome, where he heads the Nonlinear Optics and OptoElectronics Lab. He is Fellow of the Optical Society of America and a Senior Member of the IEEE Photonics Society.