Preface |
|
1 | (6) |
|
|
7 | (84) |
|
|
9 | (20) |
|
|
9 | (2) |
|
|
11 | (1) |
|
|
12 | (5) |
|
|
17 | (2) |
|
1.5 Network approaches, models, and theories |
|
|
19 | (4) |
|
|
23 | (1) |
|
|
23 | (6) |
|
2 Short Introduction to R |
|
|
29 | (16) |
|
|
29 | (1) |
|
|
29 | (2) |
|
2.3 Basics of R programming |
|
|
31 | (3) |
|
2.4 Basic R data structures |
|
|
34 | (2) |
|
2.5 Functions and packages |
|
|
36 | (2) |
|
2.6 Advanced object structures |
|
|
38 | (2) |
|
2.7 Working with data in R |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (2) |
|
3 Descriptive Analysis of Network Structures |
|
|
45 | (22) |
|
|
45 | (1) |
|
3.2 Complex systems and network science |
|
|
46 | (2) |
|
3.3 From network science to network psychometrics |
|
|
48 | (1) |
|
3.4 Constructing networks |
|
|
49 | (1) |
|
|
50 | (11) |
|
3.6 Lord of the Rings example |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (4) |
|
4 Constructing and Drawing Networks in qgraph |
|
|
67 | (12) |
|
|
67 | (1) |
|
|
67 | (5) |
|
4.3 qgraph interpretation |
|
|
72 | (3) |
|
4.4 Saving qgraph networks |
|
|
75 | (1) |
|
4.5 Descriptive analysis of networks using qgraph |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
5 Association and Conditional Independence |
|
|
79 | (12) |
|
|
79 | (1) |
|
5.2 Independence and dependence |
|
|
80 | (3) |
|
5.3 Conditional independence |
|
|
83 | (1) |
|
5.4 Testing for statistical dependencies |
|
|
84 | (2) |
|
5.5 Where do conditional dependencies come from? |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
88 | (3) |
|
II Estimating Undirected Network Models |
|
|
91 | (64) |
|
6 Pairwise Markov Random Fields |
|
|
93 | (18) |
|
|
93 | (1) |
|
6.2 Pairwise Markov random fields |
|
|
94 | (1) |
|
6.3 Interpreting pairwise Markov random fields |
|
|
95 | (7) |
|
6.4 Estimating saturated network models |
|
|
102 | (5) |
|
|
107 | (1) |
|
|
107 | (4) |
|
7 Estimating Network Structures using Model Selection |
|
|
111 | (22) |
|
|
111 | (1) |
|
7.2 Comparing multivariate statistical models |
|
|
112 | (3) |
|
7.3 Thresholding & pruning |
|
|
115 | (3) |
|
|
118 | (2) |
|
|
120 | (3) |
|
7.6 Recommendations for applied researchers |
|
|
123 | (6) |
|
|
129 | (4) |
|
8 Network Stability, Comparison, and Replicability |
|
|
133 | (22) |
|
|
133 | (2) |
|
8.2 Stability and accuracy in one sample |
|
|
135 | (5) |
|
8.3 Analyzing and comparing multiple samples |
|
|
140 | (10) |
|
|
150 | (1) |
|
|
150 | (5) |
|
III Network Models for Longitudinal Data |
|
|
155 | (56) |
|
9 Longitudinal Design Choices: Relating Data to Analysis |
|
|
157 | (12) |
|
|
157 | (1) |
|
|
158 | (2) |
|
|
160 | (2) |
|
9.4 Differences between data and analysis |
|
|
162 | (4) |
|
9.5 Separating contemporaneous and temporal effects |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
10 Network Estimation from Time Series and Panel Data |
|
|
169 | (24) |
|
|
169 | (1) |
|
10.2 Graphical vector auto-regression |
|
|
170 | (1) |
|
10.3 N = 1 estimation: personalized network models |
|
|
171 | (5) |
|
10.4 N > 1 estimation: multi-level estimation |
|
|
176 | (6) |
|
10.5 Challenges to GVAR estimation |
|
|
182 | (6) |
|
|
188 | (1) |
|
|
188 | (5) |
|
11 Modeling Change in Networks |
|
|
193 | (18) |
|
|
193 | (2) |
|
11.2 Time-varying network models |
|
|
195 | (2) |
|
11.3 Estimating time-varying network models |
|
|
197 | (4) |
|
11.4 Mood measurements example |
|
|
201 | (5) |
|
|
206 | (1) |
|
|
206 | (5) |
|
|
211 | (36) |
|
|
213 | (20) |
|
|
213 | (1) |
|
12.2 A language for expressing causal relations |
|
|
214 | (2) |
|
12.3 Statistical and causal relations |
|
|
216 | (8) |
|
12.4 Structural causal models |
|
|
224 | (4) |
|
|
228 | (1) |
|
|
228 | (5) |
|
13 Idealized Modeling of Psychological Dynamics |
|
|
233 | (14) |
|
|
233 | (1) |
|
13.2 Basics of the Ising model |
|
|
234 | (2) |
|
13.3 Idealized simulations of attitude dynamics |
|
|
236 | (3) |
|
13.4 Modeling phenomena in intelligence research |
|
|
239 | (4) |
|
|
243 | (1) |
|
|
243 | (4) |
Index |
|
247 | |