Muutke küpsiste eelistusi

Neural Information Processing: 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 26, 2024, Proceedings, Part III [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 416 pages, kõrgus x laius: 235x155 mm, 123 Illustrations, color; 13 Illustrations, black and white; XXXIII, 416 p. 136 illus., 123 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15288
  • Ilmumisaeg: 24-Jun-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819665817
  • ISBN-13: 9789819665815
  • Pehme köide
  • Hind: 70,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 83,45 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 416 pages, kõrgus x laius: 235x155 mm, 123 Illustrations, color; 13 Illustrations, black and white; XXXIII, 416 p. 136 illus., 123 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15288
  • Ilmumisaeg: 24-Jun-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819665817
  • ISBN-13: 9789819665815

The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.
The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on
four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.

FreeFlow: A Unified Viewpoint on Diffusion Probabilistic Models via
Optimal Transport and Fluid Mechanics.- Optimizing CNNs with Gram Schmidt
Non-Iterative Learning for Image Recognition.- Improving Multilingual Speech
Recognition with Tucker-compressed Mixture of LoRAs.- MetaFix:
Semi-Supervised Model Agnostic Meta-Learning using Consistency
Regularization.- Towards Private and Fair Machine Learning: Group-Specific
Differentially Private Stochastic Gradient Descent with Threshold
Optimization.- LogMoE: Optimizing Mixture of Experts for Log Anomaly
Detection via Knowledge Distillation.- Cross-Domain Few-Shot Learning with
Equiangular Embedding and Dynamic Adversarial Augmentation.- -Net: An
Unsupervised Model for Online Graph Time-Series Denoising.- On Learnable
Parameters of Optimal and Suboptimal Deep Learning Models.- Aero-engine
Condition-Based Maintenance Planning Using  Reinforcement Learning.-
Multi-Timescale Processing with Heterogeneous Assembly Echo StateNetworks.-
ADERec: Adaptive Data Augmentation Sequence Recommendation Based on Dual
Network Architecture.- Pruning neural network parameters using recurrent
neural networks.- MA-Mamba: Multi-Agent Reinforcement Learning with State
Space Model.- Decentralized Extension for Centralized Multi-Agent
Reinforcement Learning via Online Distillation.- Advancing RVFL networks:
Robust classification with the HawkEye loss function.- An Enhanced MILP-based
Verifier for Adversary Robustness of Neural  Networks.- Hide-and-Seek GANs
for Generation with Limited Data.- Unsupervised Robust Hypergraph Correlation
Hashing for MultimediaRetrieval.- Emotional Atmosphere Soft Label for Emotion
Recognition in Conversations.- CCATS: Moving Forward with Class-Conditional
Time Series Generation.- M3ixTS: Mixing of Multi-patch and Multi-view For
Time Series  Forecasting.- CSTFormer: Cross Spatial-Temporal Learning
Transformer withDynamic Sign Language Recognition through an Augmented
Reality Environment.- MmFormer: A Novel Multi-Scale and Multi-Period
Transformer Model for Irregular periodic Network Traffc Prediction.- Time
Series Anomaly Detection via Temporal Dependencies and Multivariate
Correlations Integrating.- Transformer-Based Long Time Series Forecasting
with Decoupled Information Extraction and Information Complementarity.