Muutke küpsiste eelistusi

Neural Information Processing: 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 26, 2024, Proceedings, Part VIII [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 459 pages, kõrgus x laius: 235x155 mm, 161 Illustrations, color; 3 Illustrations, black and white; XXXIII, 459 p. 164 illus., 161 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15293
  • Ilmumisaeg: 08-Jun-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819665981
  • ISBN-13: 9789819665983
  • Pehme köide
  • Hind: 70,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 83,45 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 459 pages, kõrgus x laius: 235x155 mm, 161 Illustrations, color; 3 Illustrations, black and white; XXXIII, 459 p. 164 illus., 161 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15293
  • Ilmumisaeg: 08-Jun-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819665981
  • ISBN-13: 9789819665983

The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.

Generalized Multi-Scale Separable EPI Information for Light Field Image
Super-Resolution.- ForgeryGPT: Cross-domain Face Forgery Detection using
Large Vision-Language Models.- MFCA: Multimodal Object Detection based on
Feature Calibration and Aggregation.- Omnidirectional Linear Attention Module
for Penalty Shootout Video Understanding.- UOA-RCNN: detect anything with
Unknown Object Aware RCNN.- WOODWIND: Few-shot Object Detector with Knowledge
Distillation.- LITE: A Paradigm Shift in Multi-Object Tracking with Efficient
ReID Feature Integration.- LSReGen: Large-Scale Regional Generator via
Backward Guidance Framework.- AAFE-Net:Agent-Based Adaptive Feature Enhanced
Network for Leather Defect Detection.- AA-RPN: Adaptive Anchor-based Region
Proposal Network for Remote Sensing Object Detection.- Asterisk sparse
convolutional networks for 3D object detection Shifted Window Fourier
Transform And Retention For Image Captioning.- FOPS-V: Feature-Aware
Optimization and Parallel Scale Fusion for 3D Human Reconstruction in Video.-
PEBTrack: A Performance-Efficiency Balance Tracker for Aerial Scenario.-
Multi-Scale Spatial-Angular Information Aggregation Network for Image
Semantic Segmentation.- Enhancing Semi-Supervised Medical Image Segmentation
with Asymmetric and Adversarial Cooperative Training.- Face Super-Resolution
Using Covariation-Guided Orthonormalized Partial Least Squares.- SegDaemon:
Actively Protecting Semantic Segmentation Models Against Intellectual
Property Infringement.- Contrastive Diffusion Generative Adversarial Network
for Generalized Zero-Shot Learning.- MASR: Efficient Multi-Attention Network
For Single Image Super-Resolution.- YOLO-pdd: A Novel Multi-scale PCB Defect
Detection Method Using Deep Representations with Sequential Images.-
Correlation-Guided Image-to-Video Transfer Learning for Video Recognition.-
Contrastive learning for free-view image compression network.- Enriching
Degradation Features for Fundus Image Enhancement via Multi-colour Dynamic
Filter Network.- -Code: Simple Temporal Latent Code for Efficient Dynamic
View Synthesis.- A Semantic Segmentation Method for Skin Lesion Images Based
on ViT.- Multi-scale Feature Edge Enhancement for Multi-view Stereo.-
Learning Segmented 3D Gaussians via Efficient Feature Unprojection for
Zero-shot Neural Scene Segmentation.- How to Efficiently Use Color and
Temporal Information for Video Understanding.- Retinexmamba: Retinex-based
Mamba for Low-light Image Enhancement.- BBLMixSTE:Barbell Tokenizer for
Autism Spectrum Disorder Video Reconstruction.