Muutke küpsiste eelistusi

Neural Information Processing: 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 26, 2024, Proceedings, Part XII [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 468 pages, kõrgus x laius: 235x155 mm, 131 Illustrations, color; 31 Illustrations, black and white; XXXIII, 468 p. 162 illus., 131 illus. in color., 1 Paperback / softback
  • Sari: Communications in Computer and Information Science 2293
  • Ilmumisaeg: 24-Jun-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819670047
  • ISBN-13: 9789819670048
  • Pehme köide
  • Hind: 85,76 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 100,89 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 468 pages, kõrgus x laius: 235x155 mm, 131 Illustrations, color; 31 Illustrations, black and white; XXXIII, 468 p. 162 illus., 131 illus. in color., 1 Paperback / softback
  • Sari: Communications in Computer and Information Science 2293
  • Ilmumisaeg: 24-Jun-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819670047
  • ISBN-13: 9789819670048
The sixteen-volume set, CCIS 2282-2297, constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024. The 472 regular papers presented in this proceedings set were carefully reviewed and selected from 1301 submissions. These papers primarily focus on the following areas: Theory and algorithms; Cognitive neurosciences; Human-centered computing; and Applications.
Fine-tuning Fine-tuned Models: Towards a Practical Methodology for
Sentiment Analysis with Small In-domain Supervised Dataset.- End-to-end
Knowledge Graph Construction System Powered by Large
Language Models.- EPRVR: Efficient Partially Relevant Video Retrieval with
Disentangled Video Representation Learning.- Graph-Based Data Augmentation
and Label Noise Identification for
Entity Resolution.- Patient Mortality prediction Using Clinical Notes.-
ScaleDoc: A Two-Stage Approach for Scale-Aware Document Dewarping.-
CCUH:CLIP-Based Clustering Method for Unsupervised Hashing Multi-Modal
Retrieval.- A Privacy-Preserving Image Classification Framework with
Transformer.- Reversible Data Hiding in Dual Encrypted Images with Dual
Data Embedding.- A Dual-Layer Reversible Data Hiding Scheme Based on Optimal
Neighbor Mean Interpolation (ONMI) and Histogram Shifting.- Threat
Intelligence Entity Recognition Based On Large Language Model With
Contrastive Learning.- GTSD: Generative Text Steganography Based on Diffusion
Model.- Enhanced Autoencoder Model for Robust Anomaly Detection in Financial
Fraud with Imbalanced Data.- Membership Inference Attacks in Text
Classification Tasks.- PURVEY-CE: A Complex texture adaptive image
steganography based on channel attention.- Air-Sniffing Analytics Enhancing
Wi-Fi Device Identification with Robust and Accurate Techniques.-
Spikewhisper: Temporal Spike Backdoor Attacks on Federated Neuromorphic
Learning over Low-power Devices.- Control ControlNet: Multidimensional
Backdoor Attack based on ControlNet.- CPANet: Convolutional Parameter Adapter
Network for Image
Copy-Move Forgery Detection and Localization.- AO-UAP: An Adaptive Universal
Adversarial Perturbation Generation for Speech Recognition Models.- A
Hilbert-Curve based Encoding scheme for Privacy-preserving Nearest-Neighbor
Classification.- ZKP-HGNN: A Study on Improving Zero- Knowledge Proof (ZKP)
Based on Heterogeneous Graph Neural Networks for Anonymous Digital Identity
Sharing in Blockchain.- Adversarial Knowledge Extraction via Steering
Diffusion Models.- Solving the Thinnest Path Problem with Hypergraph
Learning.- AISSGR: Attack Investigation Based on Self-Supervised
Graph Representation Learning.- Two-stage optimized adversarial patch for
attacking infrared vehicle detectors in the physical world.- Deep
Learning-Based Detection of Code Execution Vulnerabilities in Binary
Programs.- Towards Real-Time Audio Deepfake Detection in Resource-Limited
Environments.- Detecting Audio Deepfakes through Emotional Fingerprinting.-
Constructing Multi-Detector Decision Forest for Fake Speech Detection.- KDAE:
Kernel Density Auto-Encoder for Semi-Supervised Anomaly Detection with
Limited Labeled Data.