|
|
1 | (20) |
|
1.1 Major Events in Machine Learning Research |
|
|
1 | (3) |
|
|
4 | (5) |
|
1.2.1 McCulloch-Pitts Neuron Model |
|
|
5 | (2) |
|
1.2.2 Spiking Neuron Models |
|
|
7 | (2) |
|
|
9 | (4) |
|
1.4 Neural Network Processors |
|
|
13 | (3) |
|
|
16 | (1) |
|
|
17 | (4) |
|
2 Fundamentals of Machine Learning |
|
|
21 | (44) |
|
2.1 Learning and Inference Methods |
|
|
21 | (12) |
|
2.1.1 Scientific Reasoning |
|
|
22 | (2) |
|
2.1.2 Supervised, Unsupervised, and Reinforcement Learnings |
|
|
24 | (3) |
|
2.1.3 Semi-supervised Learning and Active Learning |
|
|
27 | (1) |
|
2.1.4 Other Learning Methods |
|
|
28 | (5) |
|
2.2 Learning and Generalization |
|
|
33 | (7) |
|
2.2.1 Generalization Error |
|
|
34 | (1) |
|
2.2.2 Generalization by Stopping Criterion |
|
|
35 | (1) |
|
2.2.3 Generalization by Regularization |
|
|
36 | (1) |
|
|
37 | (2) |
|
2.2.5 Fault Tolerance and Generalization |
|
|
39 | (1) |
|
2.2.6 Sparsity Versus Stability |
|
|
40 | (1) |
|
|
40 | (5) |
|
|
41 | (2) |
|
2.3.2 Complexity Criteria |
|
|
43 | (2) |
|
|
45 | (2) |
|
|
47 | (2) |
|
|
49 | (2) |
|
2.7 Neural Networks as Universal Machines |
|
|
51 | (7) |
|
2.7.1 Boolean Function Approximation |
|
|
51 | (2) |
|
2.7.2 Linear Separability and Nonlinear Separability |
|
|
53 | (2) |
|
2.7.3 Continuous Function Approximation |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (7) |
|
3 Elements of Computational Learning Theory |
|
|
65 | (16) |
|
|
65 | (1) |
|
3.2 Probably Approximately Correct (PAC) Learning |
|
|
66 | (2) |
|
|
67 | (1) |
|
3.3 Vapnik-Chervonenkis Dimension |
|
|
68 | (2) |
|
|
70 | (1) |
|
3.4 Rademacher Complexity |
|
|
70 | (2) |
|
3.5 Empirical Risk-Minimization Principle |
|
|
72 | (3) |
|
3.5.1 Function Approximation, Regularization, and Risk Minimization |
|
|
74 | (1) |
|
3.6 Fundamental Theorem of Learning Theory |
|
|
75 | (1) |
|
3.7 No-Free-Lunch Theorem |
|
|
76 | (1) |
|
|
77 | (4) |
|
|
81 | (16) |
|
4.1 One-Neuron Perceptron |
|
|
81 | (1) |
|
4.2 Single-Layer Perceptron |
|
|
82 | (1) |
|
4.3 Perceptron Learning Algorithm |
|
|
83 | (2) |
|
4.4 Least Mean Squares (LMS) Algorithm |
|
|
85 | (3) |
|
|
88 | (1) |
|
4.6 Other Learning Algorithms |
|
|
89 | (4) |
|
|
93 | (4) |
|
5 Multilayer Perceptrons: Architecture and Error Backpropagation |
|
|
97 | (46) |
|
|
97 | (1) |
|
5.2 Universal Approximation |
|
|
98 | (1) |
|
5.3 Backpropagation Learning Algorithm |
|
|
99 | (5) |
|
5.4 Incremental Learning Versus Batch Learning |
|
|
104 | (5) |
|
5.5 Activation Functions for the Output Layer |
|
|
109 | (1) |
|
5.6 Optimizing Network Structure |
|
|
110 | (7) |
|
5.6.1 Network Pruning Using Sensitivity Analysis |
|
|
110 | (3) |
|
5.6.2 Network Pruning Using Regularization |
|
|
113 | (2) |
|
|
115 | (2) |
|
5.7 Speeding Up Learning Process |
|
|
117 | (10) |
|
5.7.1 Eliminating Premature Saturation |
|
|
117 | (2) |
|
5.7.2 Adapting Learning Parameters |
|
|
119 | (4) |
|
5.7.3 Initializing Weights |
|
|
123 | (1) |
|
5.7.4 Adapting Activation Function |
|
|
124 | (3) |
|
5.8 Some Improved BP Algorithms |
|
|
127 | (3) |
|
5.8.1 BP with Global Descent |
|
|
128 | (1) |
|
5.8.2 Robust BP Algorithms |
|
|
129 | (1) |
|
5.9 Resilient Propagation (Rprop) |
|
|
130 | (2) |
|
5.10 Spiking Neural Network Learning |
|
|
132 | (3) |
|
|
135 | (8) |
|
6 Multilayer Perceptrons: Other Learing Techniques |
|
|
143 | (30) |
|
6.1 Introduction to Second-Order Learning Methods |
|
|
143 | (1) |
|
|
144 | (5) |
|
6.2.1 Gauss-Newton Method |
|
|
145 | (1) |
|
6.2.2 Levenberg-Marquardt Method |
|
|
146 | (3) |
|
|
149 | (3) |
|
|
150 | (2) |
|
6.3.2 One-Step Secant Method |
|
|
152 | (1) |
|
6.4 Conjugate Gradient Methods |
|
|
152 | (5) |
|
6.5 Extended Kalman Filtering Methods |
|
|
157 | (2) |
|
6.6 Recursive Least Squares |
|
|
159 | (1) |
|
6.7 Natural-Gradient-Descent Method |
|
|
160 | (1) |
|
6.8 Other Learning Algorithms |
|
|
161 | (1) |
|
6.8.1 Layerwise Linear Learning |
|
|
161 | (1) |
|
6.9 Escaping Local Minima |
|
|
162 | (1) |
|
6.10 Complex-Valued MLPs and Their Learning |
|
|
163 | (5) |
|
|
164 | (1) |
|
|
164 | (4) |
|
|
168 | (5) |
|
7 Hopfield Networks, Simulated Annealing, and Chaotic Neural Networks |
|
|
173 | (28) |
|
|
173 | (3) |
|
7.2 Continuous-Time Hopfield Network |
|
|
176 | (3) |
|
|
179 | (3) |
|
7.4 Hopfield Networks for Optimization |
|
|
182 | (7) |
|
7.4.1 Combinatorial Optimization Problems |
|
|
183 | (4) |
|
7.4.2 Escaping Local Minima |
|
|
187 | (1) |
|
7.4.3 Solving Other Optimization Problems |
|
|
188 | (1) |
|
7.5 Chaos and Chaotic Neural Networks |
|
|
189 | (4) |
|
7.5.1 Chaos, Bifurcation, and Fractals |
|
|
189 | (1) |
|
7.5.2 Chaotic Neural Networks |
|
|
190 | (3) |
|
7.6 Multistate Hopfield Networks |
|
|
193 | (1) |
|
7.7 Cellular Neural Networks |
|
|
194 | (3) |
|
|
197 | (4) |
|
8 Associative Memory Networks |
|
|
201 | (30) |
|
|
201 | (2) |
|
8.2 Hopfield Model: Storage and Retrieval |
|
|
203 | (4) |
|
8.2.1 Generalized Hebbian Rule |
|
|
203 | (2) |
|
|
205 | (1) |
|
8.2.3 Perceptron-Type Learning Rule |
|
|
205 | (1) |
|
|
206 | (1) |
|
8.3 Storage Capability of Hopfield Model |
|
|
207 | (5) |
|
8.4 Increasing Storage Capacity |
|
|
212 | (2) |
|
8.5 Multistate Hopfield Networks as Associative Memories |
|
|
214 | (1) |
|
8.6 Multilayer Perceptrons as Associative Memories |
|
|
215 | (2) |
|
|
217 | (2) |
|
8.8 Bidirectional Associative Memories |
|
|
219 | (1) |
|
8.9 Cohen-Grossberg Model |
|
|
220 | (1) |
|
8.10 Cellular Networks as Associative Memories |
|
|
221 | (5) |
|
|
226 | (5) |
|
9 Clustering I: Basic Clustering Models and Algorithms |
|
|
231 | (44) |
|
|
231 | (1) |
|
|
232 | (2) |
|
|
234 | (10) |
|
|
235 | (1) |
|
9.3.2 Basic Self-Organizing Maps |
|
|
236 | (8) |
|
9.4 Learning Vector Quantization |
|
|
244 | (2) |
|
9.5 Nearest Neighbor Algorithms |
|
|
246 | (3) |
|
|
249 | (3) |
|
|
252 | (4) |
|
|
253 | (1) |
|
|
254 | (2) |
|
|
256 | (3) |
|
9.9 Subtractive Clustering |
|
|
259 | (3) |
|
|
262 | (7) |
|
9.10.1 Fuzzy C-Means Clustering |
|
|
262 | (3) |
|
9.10.2 Other Fuzzy Clustering Algorithms |
|
|
265 | (4) |
|
|
269 | (6) |
|
10 Clustering II: Topics in Clustering |
|
|
275 | (40) |
|
10.1 Underutilization Problem |
|
|
275 | (5) |
|
10.1.1 Competitive Learning with Conscience |
|
|
275 | (2) |
|
10.1.2 Rival Penalized Competitive Learning |
|
|
277 | (2) |
|
10.1.3 Soft-Competitive Learning |
|
|
279 | (1) |
|
|
280 | (4) |
|
10.2.1 Possibilistic C-Means |
|
|
282 | (1) |
|
10.2.2 A Unified Framework for Robust Clustering |
|
|
283 | (1) |
|
10.3 Supervised Clustering |
|
|
284 | (1) |
|
10.4 Clustering Using Non-Euclidean Distance Measures |
|
|
285 | (2) |
|
10.5 Partitional, Hierarchical, and Density-Based Clustering |
|
|
287 | (1) |
|
10.6 Hierarchical Clustering |
|
|
288 | (8) |
|
10.6.1 Distance Measures, Cluster Representations, and Dendrograms |
|
|
288 | (2) |
|
10.6.2 Minimum Spanning Tree (MST) Clustering |
|
|
290 | (2) |
|
10.6.3 BIRCH, CURE, CHAMELEON, and DBSCAN |
|
|
292 | (3) |
|
10.6.4 Hybrid Hierarchical/Partitional Clustering |
|
|
295 | (1) |
|
10.7 Constructive Clustering Techniques |
|
|
296 | (2) |
|
|
298 | (5) |
|
10.8.1 Measures Based on Compactness and Separation of Clusters |
|
|
299 | (1) |
|
10.8.2 Measures Based on Hypervolume and Density of Clusters |
|
|
300 | (1) |
|
10.8.3 Crisp Silhouette and Fuzzy Silhouette |
|
|
301 | (2) |
|
10.9 Projected Clustering |
|
|
303 | (1) |
|
10.10 Spectral Clustering |
|
|
304 | (1) |
|
|
305 | (1) |
|
10.12 Handling Qualitative Data |
|
|
306 | (1) |
|
10.13 Bibliographical Notes |
|
|
307 | (1) |
|
|
308 | (7) |
|
11 Radial Basis Function Networks |
|
|
315 | (36) |
|
|
315 | (2) |
|
11.2 RBF Network Architecture |
|
|
317 | (1) |
|
11.3 Universal Approximation of RBF Networks |
|
|
318 | (1) |
|
11.4 Formulation for RBF Network Learning |
|
|
319 | (1) |
|
11.5 Radial Basis Functions |
|
|
320 | (3) |
|
11.6 Learning RBF Centers |
|
|
323 | (2) |
|
11.7 Learning the Weights |
|
|
325 | (2) |
|
11.7.1 Least Squares Methods for Weights Learning |
|
|
325 | (2) |
|
11.8 RBF Network Learning Using Orthogonal Least Squares |
|
|
327 | (2) |
|
11.9 Supervised Learning of All Parameters |
|
|
329 | (3) |
|
11.9.1 Supervised Learning for General RBF Networks |
|
|
329 | (1) |
|
11.9.2 Supervised Learning for Gaussian RBF Networks |
|
|
330 | (1) |
|
11.9.3 Discussion on Supervised Learning |
|
|
331 | (1) |
|
11.10 Various Learning Methods |
|
|
332 | (2) |
|
11.11 Normalized RBF Networks |
|
|
334 | (1) |
|
11.12 Optimizing Network Structure |
|
|
335 | (4) |
|
11.12.1 Constructive Methods |
|
|
335 | (2) |
|
11.12.2 Resource-Allocating Networks |
|
|
337 | (2) |
|
|
339 | (1) |
|
11.13 Complex RBF Networks |
|
|
339 | (2) |
|
11.14 A Comparison of RBF Networks and MLPs |
|
|
341 | (4) |
|
|
345 | (6) |
|
12 Recurrent Neural Networks |
|
|
351 | (22) |
|
|
351 | (2) |
|
12.2 Fully Connected Recurrent Networks |
|
|
353 | (1) |
|
12.3 Time-Delay Neural Networks |
|
|
354 | (3) |
|
12.4 Backpropagation for Temporal Learning |
|
|
357 | (3) |
|
12.5 RBF Networks for Modeling Dynamic Systems |
|
|
360 | (1) |
|
12.6 Some Recurrent Models |
|
|
360 | (2) |
|
|
362 | (6) |
|
|
368 | (5) |
|
13 Principal Component Analysis |
|
|
373 | (54) |
|
|
373 | (3) |
|
13.1.1 Hebbian Learning Rule |
|
|
374 | (1) |
|
13.1.2 Oja's Learning Rule |
|
|
375 | (1) |
|
13.2 PC A: Conception and Model |
|
|
376 | (3) |
|
13.3 Hebbian Rule-Based PCA |
|
|
379 | (6) |
|
13.3.1 Subspace Learning Algorithms |
|
|
379 | (4) |
|
13.3.2 Generalized Hebbian Algorithm |
|
|
383 | (2) |
|
13.4 Least Mean Squared Error-Based PCA |
|
|
385 | (5) |
|
13.4.1 Other Optimization-Based PCA |
|
|
389 | (1) |
|
13.5 Anti-Hebbian Rule-Based PCA |
|
|
390 | (5) |
|
|
391 | (4) |
|
|
395 | (3) |
|
13.6.1 Autoassociative Network-Based Nonlinear PCA |
|
|
396 | (2) |
|
13.7 Minor Component Analysis |
|
|
398 | (3) |
|
13.7.1 Extracting the First Minor Component |
|
|
398 | (1) |
|
13.7.2 Self-Stabilizing Minor Component Analysis |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
401 | (2) |
|
|
402 | (1) |
|
13.9 Localized PCA, Incremental PCA, and Supervised PCA |
|
|
403 | (2) |
|
|
405 | (1) |
|
13.11 Two-Dimensional PCA |
|
|
406 | (1) |
|
13.12 Generalized Eigenvalue Decomposition |
|
|
407 | (2) |
|
13.13 Singular Value Decomposition |
|
|
409 | (5) |
|
13.13.1 Cross-Correlation Asymmetric PCA Networks |
|
|
409 | (3) |
|
13.13.2 Extracting Principal Singular Components for Nonsquare Matrices |
|
|
412 | (1) |
|
13.13.3 Extracting Multiple Principal Singular Components |
|
|
413 | (1) |
|
|
414 | (1) |
|
13.15 Canonical Correlation Analysis |
|
|
415 | (3) |
|
|
418 | (9) |
|
14 Nonnegative Matrix Factorization |
|
|
427 | (20) |
|
|
427 | (2) |
|
|
429 | (3) |
|
14.2.1 Multiplicative Update Algorithm and Alternating Nonnegative Least Squares |
|
|
429 | (3) |
|
|
432 | (6) |
|
14.3.1 NMF Methods for Clustering |
|
|
435 | (2) |
|
14.3.2 Concept Factorization |
|
|
437 | (1) |
|
|
438 | (2) |
|
|
440 | (1) |
|
|
441 | (6) |
|
15 Independent Component Analysis |
|
|
447 | (36) |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
449 | (2) |
|
15.4 Popular ICA Algorithms |
|
|
451 | (8) |
|
|
451 | (2) |
|
15.4.2 EASI, JADE, and Natural Gradient ICA |
|
|
453 | (1) |
|
|
454 | (5) |
|
|
459 | (3) |
|
|
462 | (6) |
|
|
462 | (1) |
|
|
462 | (1) |
|
|
463 | (1) |
|
15.6.4 ICA for Convolutive Mixtures |
|
|
464 | (1) |
|
15.6.5 Other BSS/ICA Methods |
|
|
465 | (3) |
|
|
468 | (2) |
|
15.8 Source Separation for Time Series |
|
|
470 | (2) |
|
|
472 | (4) |
|
|
476 | (7) |
|
|
483 | (20) |
|
16.1 Linear Discriminant Analysis |
|
|
483 | (4) |
|
16.2 Solving Small Sample Size Problem |
|
|
487 | (1) |
|
|
487 | (1) |
|
|
488 | (2) |
|
16.5 Uncorrected LDA and Orthogonal LDA |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
492 | (1) |
|
16.8 Other Discriminant Methods |
|
|
493 | (2) |
|
16.9 Nonlinear Discriminant Analysis |
|
|
495 | (2) |
|
16.10 Two-Dimensional Discriminant Analysis |
|
|
497 | (1) |
|
|
498 | (5) |
|
17 Reinforcement Learning |
|
|
503 | (22) |
|
|
503 | (2) |
|
17.2 Learning Through Awards |
|
|
505 | (2) |
|
|
507 | (2) |
|
17.4 Model-Free and Model-Based Reinforcement Learning |
|
|
509 | (3) |
|
17.5 Learning from Demonstrations |
|
|
512 | (1) |
|
17.6 Temporal-Difference Learning |
|
|
513 | (3) |
|
|
514 | (1) |
|
|
515 | (1) |
|
|
516 | (2) |
|
17.8 Multiagent Reinforcement Learning |
|
|
518 | (3) |
|
17.8.1 Equilibrium-Based Multiagent Reinforcement Learning |
|
|
519 | (1) |
|
|
520 | (1) |
|
|
521 | (4) |
|
18 Compressed Sensing and Dictionary Learning |
|
|
525 | (24) |
|
|
525 | (1) |
|
|
526 | (9) |
|
18.2.1 Restricted Isometry Property |
|
|
527 | (1) |
|
|
528 | (2) |
|
18.2.3 Iterative Hard Thresholding |
|
|
530 | (2) |
|
18.2.4 Orthogonal Matching Pursuit |
|
|
532 | (1) |
|
18.2.5 Restricted Isometry Property for Signal Recovery Methods |
|
|
533 | (2) |
|
18.2.6 Tensor Compressive Sensing |
|
|
535 | (1) |
|
18.3 Sparse Coding and Dictionary Learning |
|
|
535 | (3) |
|
|
538 | (2) |
|
18.5 Other Sparse Algorithms |
|
|
540 | (1) |
|
|
541 | (8) |
|
|
549 | (20) |
|
|
549 | (1) |
|
|
550 | (7) |
|
19.2.1 Minimizing the Nuclear Norm |
|
|
551 | (2) |
|
19.2.2 Matrix Factorization-Based Methods |
|
|
553 | (1) |
|
19.2.3 Theoretical Guarantees on Exact Matrix Completion |
|
|
554 | (2) |
|
19.2.4 Discrete Matrix Completion |
|
|
556 | (1) |
|
19.3 Low-Rank Representation |
|
|
557 | (1) |
|
19.4 Tensor Factorization and Tensor Completion |
|
|
558 | (5) |
|
19.4.1 Tensor Factorization |
|
|
560 | (1) |
|
|
561 | (2) |
|
|
563 | (6) |
|
|
569 | (24) |
|
|
569 | (1) |
|
20.2 Kernel Functions and Representer Theorem |
|
|
570 | (2) |
|
|
572 | (4) |
|
|
576 | (2) |
|
|
578 | (1) |
|
20.6 Kernel Auto-associators, Kernel CCA, and Kernel ICA |
|
|
579 | (2) |
|
20.7 Other Kernel Methods |
|
|
581 | (2) |
|
20.7.1 Random Kitchen Sinks and Fastfood |
|
|
583 | (1) |
|
20.8 Multiple Kernel Learning |
|
|
583 | (3) |
|
|
586 | (7) |
|
21 Support Vector Machines |
|
|
593 | (52) |
|
|
593 | (1) |
|
|
594 | (3) |
|
21.2.1 SVM Versus Neural Networks |
|
|
597 | (1) |
|
21.3 Solving the Quadratic Programming Problem |
|
|
597 | (6) |
|
|
599 | (1) |
|
|
599 | (4) |
|
21.3.3 Convergence of Decomposition Methods |
|
|
603 | (1) |
|
|
603 | (3) |
|
21.5 S VM Training Methods |
|
|
606 | (9) |
|
21.5.1 SVM Algorithms with Reduced Kernel Matrix |
|
|
606 | (2) |
|
|
608 | (1) |
|
21.5.3 Cutting-Plane Technique |
|
|
609 | (1) |
|
21.5.4 Gradient-Based Methods |
|
|
610 | (1) |
|
21.5.5 Training SVM in the Primal Formulation |
|
|
610 | (2) |
|
21.5.6 Clustering-Based SVM |
|
|
612 | (1) |
|
|
613 | (2) |
|
|
615 | (2) |
|
|
617 | (2) |
|
21.8 Support Vector Regression |
|
|
619 | (5) |
|
21.8.1 Solving Support Vector Regression |
|
|
621 | (3) |
|
21.9 Support Vector Clustering |
|
|
624 | (3) |
|
21.10 SVMs for One-Class Classification |
|
|
627 | (1) |
|
|
628 | (2) |
|
21.12 SVMs for Active, Transductive, and Semi-supervised Learnings |
|
|
630 | (3) |
|
21.12.1 SVMs for Active Learning |
|
|
630 | (1) |
|
21.12.2 SVMs for Transductive or Semi-supervised Learning |
|
|
630 | (3) |
|
21.13 Solving SVM with Indefinite Matrices |
|
|
633 | (2) |
|
|
635 | (10) |
|
22 Probabilistic and Bayesian Networks |
|
|
645 | (54) |
|
|
645 | (4) |
|
22.1.1 Classical Versus Bayesian Approach |
|
|
646 | (1) |
|
22.1.2 Bayes' Theorem and Bayesian Classifiers |
|
|
647 | (1) |
|
|
648 | (1) |
|
22.2 Bayesian Network Model |
|
|
649 | (3) |
|
22.3 Learning Bayesian Networks |
|
|
652 | (8) |
|
22.3.1 Learning the Structure |
|
|
653 | (4) |
|
22.3.2 Learning the Parameters |
|
|
657 | (2) |
|
22.3.3 Constraint-Handling |
|
|
659 | (1) |
|
22.4 Bayesian Network Inference |
|
|
660 | (6) |
|
22.4.1 Belief Propagation |
|
|
660 | (3) |
|
22.4.2 Factor Graphs and Belief Propagation Algorithm |
|
|
663 | (3) |
|
22.5 Sampling (Monte Carlo) Methods |
|
|
666 | (4) |
|
|
667 | (2) |
|
22.5.2 Importance Sampling |
|
|
669 | (1) |
|
22.5.3 Particle Filtering |
|
|
669 | (1) |
|
22.6 Variational Bayesian Methods |
|
|
670 | (2) |
|
22.7 Hidden Markov Models |
|
|
672 | (3) |
|
22.8 Dynamic Bayesian Networks |
|
|
675 | (1) |
|
22.9 Expectation-Maximization Method |
|
|
676 | (2) |
|
|
678 | (1) |
|
22.11 Bayesian and Probabilistic Approach to Machine Learning |
|
|
679 | (10) |
|
22.11.1 Probabilistic PCA |
|
|
681 | (1) |
|
22.11.2 Probabilistic Clustering |
|
|
682 | (1) |
|
22.11.3 Probabilistic ICA |
|
|
683 | (2) |
|
22.11.4 Probabilisitic Approach to SVM |
|
|
685 | (1) |
|
22.11.5 Relevance Vector Machines |
|
|
685 | (4) |
|
|
689 | (10) |
|
|
699 | (18) |
|
|
699 | (4) |
|
23.1.1 Boltzmann Learning Algorithm |
|
|
701 | (2) |
|
23.2 Restricted Boltzmann Machines |
|
|
703 | (6) |
|
23.2.1 Universal Approximation |
|
|
705 | (1) |
|
23.2.2 Contrastive Divergence Algorithm |
|
|
706 | (2) |
|
|
708 | (1) |
|
23.3 Mean-Field-Theory Machine |
|
|
709 | (2) |
|
23.4 Stochastic Hopfield Networks |
|
|
711 | (1) |
|
|
712 | (5) |
|
|
717 | (20) |
|
|
717 | (2) |
|
24.2 Deep Neural Networks |
|
|
719 | (2) |
|
24.2.1 Deep Networks Versus Shallow Networks |
|
|
720 | (1) |
|
24.3 Deep Belief Networks |
|
|
721 | (2) |
|
24.3.1 Training Deep Belief Networks |
|
|
722 | (1) |
|
|
723 | (1) |
|
24.5 Deep Convolutional Neural Networks |
|
|
724 | (5) |
|
24.5.1 Solving the Difficulties of Gradient Descent |
|
|
725 | (1) |
|
24.5.2 Implementing Deep Convolutional Neural Networks |
|
|
726 | (3) |
|
24.6 Deep Reinforcement Learning |
|
|
729 | (1) |
|
24.7 Other Deep Neural Network Methods |
|
|
730 | (2) |
|
|
732 | (5) |
|
25 Combining Multiple Learners: Data Fusion and Ensemble Learning |
|
|
737 | (32) |
|
|
737 | (3) |
|
25.1.1 Ensemble Learning Methods |
|
|
738 | (1) |
|
|
739 | (1) |
|
|
740 | (1) |
|
|
741 | (2) |
|
|
743 | (5) |
|
|
744 | (2) |
|
25.4.2 Other Boosting Algorithms |
|
|
746 | (2) |
|
|
748 | (3) |
|
25.5.1 AdaBoost Versus Random Forests |
|
|
750 | (1) |
|
25.6 Topics in Ensemble Learning |
|
|
751 | (3) |
|
25.6.1 Ensemble Neural Networks |
|
|
751 | (1) |
|
25.6.2 Diversity Versus Ensemble Accuracy |
|
|
752 | (1) |
|
25.6.3 Theoretical Analysis |
|
|
753 | (1) |
|
25.6.4 Ensembles for Streams |
|
|
753 | (1) |
|
25.7 Solving Multiclass Classification |
|
|
754 | (4) |
|
25.7.1 One-Against-All Strategy |
|
|
754 | (1) |
|
25.7.2 One-Against-One Strategy |
|
|
755 | (1) |
|
25.7.3 Error-Correcting Output Codes (ECOCs) |
|
|
756 | (2) |
|
25.8 Dempster-Shafer Theory of Evidence |
|
|
758 | (4) |
|
|
762 | (7) |
|
26 Introduction to Fuzzy Sets and Logic |
|
|
769 | (34) |
|
|
769 | (1) |
|
26.2 Definitions and Terminologies |
|
|
770 | (6) |
|
|
776 | (1) |
|
26.4 Intersection, Union and Negation |
|
|
777 | (2) |
|
26.5 Fuzzy Relation and Aggregation |
|
|
779 | (2) |
|
|
781 | (1) |
|
26.7 Reasoning and Fuzzy Reasoning |
|
|
782 | (4) |
|
26.7.1 Modus Ponens and Modus Tollens |
|
|
783 | (1) |
|
26.7.2 Generalized Modus Ponens |
|
|
784 | (1) |
|
26.7.3 Fuzzy Reasoning Methods |
|
|
785 | (1) |
|
26.8 Fuzzy Inference Systems |
|
|
786 | (3) |
|
26.8.1 Fuzzy Rules and Fuzzy Interference |
|
|
787 | (1) |
|
26.8.2 Fuzzification and Defuzzification |
|
|
788 | (1) |
|
|
789 | (3) |
|
|
789 | (1) |
|
26.9.2 Takagi-Sugeno-Kang Model |
|
|
790 | (2) |
|
26.10 Complex Fuzzy Logic |
|
|
792 | (1) |
|
|
793 | (2) |
|
26.12 Case-Based Reasoning |
|
|
795 | (1) |
|
26.13 Granular Computing and Ontology |
|
|
795 | (4) |
|
|
799 | (4) |
|
|
803 | (26) |
|
|
803 | (2) |
|
|
804 | (1) |
|
27.2 Rule Extraction from Trained Neural Networks |
|
|
805 | (4) |
|
27.2.1 Fuzzy Rules and Multilayer Perceptrons |
|
|
805 | (1) |
|
27.2.2 Fuzzy Rules and RBF Networks |
|
|
806 | (1) |
|
27.2.3 Rule Extraction from SVMs |
|
|
807 | (1) |
|
27.2.4 Rule Generation from Other Neural Networks |
|
|
808 | (1) |
|
27.3 Extracting Rules from Numerical Data |
|
|
809 | (3) |
|
27.3.1 Rule Generation Based on Fuzzy Partitioning |
|
|
809 | (2) |
|
|
811 | (1) |
|
27.4 Synergy of Fuzzy Logic and Neural Networks |
|
|
812 | (1) |
|
|
813 | (6) |
|
27.6 Generic Fuzzy Perceptron |
|
|
819 | (2) |
|
|
821 | (1) |
|
27.8 Other Neurofuzzy Models |
|
|
822 | (3) |
|
|
825 | (4) |
|
28 Neural Network Circuits and Parallel Implementations |
|
|
829 | (24) |
|
|
829 | (2) |
|
28.2 Hardware/Software Codesign |
|
|
831 | (1) |
|
28.3 Topics in Digital Circuit Designs |
|
|
832 | (1) |
|
28.4 Circuits for Neural Networks |
|
|
833 | (7) |
|
|
833 | (2) |
|
|
835 | (1) |
|
28.4.3 Circuits for RBF Networks |
|
|
836 | (1) |
|
28.4.4 Circuits for Clustering |
|
|
837 | (1) |
|
|
837 | (1) |
|
28.4.6 Circuits for Other Neural Network Models |
|
|
838 | (1) |
|
28.4.7 Circuits for Fuzzy Neural Models |
|
|
839 | (1) |
|
28.5 Graphic Processing Unit (GPU) Implementation |
|
|
840 | (2) |
|
28.6 Implementation Using Systolic Algorithms |
|
|
842 | (1) |
|
28.7 Implementation on Parallel Computers |
|
|
843 | (3) |
|
28.7.1 Distributed and Parallel SVMs |
|
|
845 | (1) |
|
|
846 | (7) |
|
29 Pattern Recognition for Biometrics and Bioinformatics |
|
|
853 | (18) |
|
|
853 | (5) |
|
29.1.1 Physiological Biometrics and Recognition |
|
|
854 | (3) |
|
29.1.2 Behavioral Biometrics and Recognition |
|
|
857 | (1) |
|
29.2 Face Detection and Recognition |
|
|
858 | (4) |
|
|
859 | (1) |
|
|
860 | (2) |
|
|
862 | (7) |
|
29.3.1 Microarray Technology |
|
|
864 | (3) |
|
29.3.2 Motif Discovery, Sequence Alignment, Protein Folding, and Coclustering |
|
|
867 | (2) |
|
|
869 | (2) |
|
|
871 | (34) |
|
|
871 | (1) |
|
30.2 Document Representations for Text Categorization |
|
|
872 | (2) |
|
30.3 Neural Network Approach to Data Mining |
|
|
874 | (5) |
|
30.3.1 Classification-Based Data Mining |
|
|
874 | (1) |
|
30.3.2 Clustering-Based Data Mining |
|
|
875 | (3) |
|
30.3.3 Bayesian Network-Based Data Mining |
|
|
878 | (1) |
|
|
879 | (2) |
|
|
881 | (1) |
|
30.5.1 Affective Computing |
|
|
881 | (1) |
|
|
882 | (1) |
|
30.7 Ranking Search Results |
|
|
883 | (6) |
|
|
884 | (1) |
|
30.7.2 PageRank Algorithm |
|
|
885 | (3) |
|
30.7.3 Hypertext-Induced Topic Search (HITS) |
|
|
888 | (1) |
|
|
889 | (2) |
|
|
891 | (2) |
|
30.10 Content-Based Image Retrieval |
|
|
893 | (3) |
|
30.11 E-mail Anti-spamming |
|
|
896 | (1) |
|
|
897 | (8) |
|
31 Big Data, Cloud Computing, and Internet of Things |
|
|
905 | (28) |
|
|
905 | (8) |
|
31.1.1 Introduction to Big Data |
|
|
905 | (1) |
|
|
906 | (4) |
|
31.1.3 Hadoop Software Stack |
|
|
910 | (1) |
|
31.1.4 Other Big Data Tools |
|
|
911 | (1) |
|
|
912 | (1) |
|
|
913 | (9) |
|
31.2.1 Services Models, Pricing, and Standards |
|
|
914 | (3) |
|
31.2.2 Virtual Machines, Data Centers, and Intercloud Connections |
|
|
917 | (3) |
|
31.2.3 Cloud Infrastructure Requirements |
|
|
920 | (2) |
|
|
922 | (5) |
|
31.3.1 Architecture of IoT |
|
|
922 | (2) |
|
31.3.2 Cyber-Physical System Versus IoT |
|
|
924 | (3) |
|
|
927 | (1) |
|
|
928 | (2) |
|
|
930 | (3) |
Appendix A Mathematical Preliminaries |
|
933 | (24) |
Appendix B Benchmarks and Resources |
|
957 | (22) |
Index |
|
979 | |