Muutke küpsiste eelistusi

New Ecoinformatics Tools in Environmental Science: Applications and Decision-making [Kõva köide]

  • Formaat: Hardback, 903 pages, kõrgus x laius: 235x155 mm, 120 Illustrations, color; 169 Illustrations, black and white; XXXIII, 903 p. 289 illus., 120 illus. in color., 1 Hardback
  • Sari: Environmental Earth Sciences
  • Ilmumisaeg: 03-Feb-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319139770
  • ISBN-13: 9783319139777
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 903 pages, kõrgus x laius: 235x155 mm, 120 Illustrations, color; 169 Illustrations, black and white; XXXIII, 903 p. 289 illus., 120 illus. in color., 1 Hardback
  • Sari: Environmental Earth Sciences
  • Ilmumisaeg: 03-Feb-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319139770
  • ISBN-13: 9783319139777
This book provides new insights on the study of global environmental changes using the ecoinformatics tools and the adaptive-evolutionary technology of geoinformation monitoring. The main advantage of this book is that it gathers and presents extensive interdisciplinary expertise in the parameterization of global biogeochemical cycles and other environmental processes in the context of globalization and sustainable development. In this regard, the crucial global problems concerning the dynamics of the nature-society system are considered and the key problems of ensuring the system"s sustainable development are studied. A new approach to the numerical modeling of the nature-society system is proposed and results are provided on modeling the dynamics of the system"s characteristics with regard to scenarios of anthropogenic impacts on biogeochemical cycles, land ecosystems and oceans. The main purpose of this book is to develop a universal guide to information-modeling technologies f

or assessing the function of environmental subsystems under various climatic and anthropogenic conditions.

Information-modeling technology for the environmental monitoring.- Remote-sensing technologies and data processing algorithms.- Environmental decision-making.- Ecoinformatics problems of the world ocean.- Ecoinformatics problems of global climate change.- The Arctic environmental problems.- Tropical cyclogenesis and ecoinformatics methods.- Ecoinformatics and soil-plant formations.- Operational diagnostics, estimation of the scale of damage and aftermath reduction of stressful natural processes.- Ecoinformatics problems in the future world.
1 Information-Modeling Technology for the Environmental Monitoring 1(118)
1.1 The Principal Conception of the Information-Modeling Technology
1(5)
1.2 Information-Modeling Technology as a Key Instrument for the Solution of Environmental Problems
6(8)
1.2.1 Standardization and Universalization of the Functions of the Global Information-Modeling System
6(3)
1.2.2 Simulation Experiment Based on the Global Information-Modeling System
9(5)
1.3 Structural Aspects of Information-Modelling Technology
14(18)
1.3.1 Description of the Structure of a Common Global Information-Modeling System
14(3)
1.3.2 The Subsystems of the Global Information-Modeling System
17(11)
1.3.3 The Global Information-Modeling System-Based on Monitoring Systems
28(4)
1.4 The Evolutionary Modeling as an Item of the Information-Modeling Technology
32(6)
1.4.1 The Evolutionary Modeling Technology
32(4)
1.4.2 Tools of Evolutionary Modeling Technology
36(2)
1.5 A Global Model as Unit of the Information-Modeling Technology
38(19)
1.5.1 Principal Structure of Global Model
38(4)
1.5.2 Global Biogeochemical Cycles as Units of Global Model
42(15)
1.6 Block Schemes of Models for Biogeochemical Cycles
57(30)
1.6.1 Schemes of the Global Carbon Cycle
57(6)
1.6.2 Conceptual Schemes of the Nitrogen Cycle in Nature
63(5)
1.6.3 Conceptual Schemes of the Global Oxygen Cycle
68(4)
1.6.4 Biogeochemical Cycle of Methane
72(10)
1.6.5 Block-Schemes of Global Sulfur Cycle
82(2)
1.6.6 Conceptual Schemes of Global Phosphorus Cycle
84(3)
1.7 Models of Global Biogeochemical Cycles
87(24)
1.7.1 Key Aspects of Global Biogeochemical Cycles
87(1)
1.7.2 The Carbon Cycle Modeling
88(2)
1.7.3 Nitrogen Cycle Modeling
90(6)
1.7.4 Oxygen and Ozone Cycles Modeling
96(5)
1.7.5 Global Methane Budget Modeling
101(1)
1.7.6 Global Sulfur Cycle Modeling
102(6)
1.7.7 Global Phosphorus Cycle Modeling
108(3)
1.8 Climate Unit of the Global Model
111(6)
1.9 Conclusion
117(2)
2 Remote-Sensing Technologies and Data Processing Algorithms 119(102)
2.1 Remote Sensing Methods
119(5)
2.2 Remote Sensing Techniques
124(15)
2.3 Microwave Radiometry and Remote Sensing of the Environment
139(7)
2.3.1 Remote-Sensing Technologies in the Infrared and Optical Bands
143(3)
2.4 Monitoring of the Soil-Plant Formations
146(3)
2.5 Microwave Monitoring of the Soil Moisture
149(10)
2.5.1 Introduction
149(2)
2.5.2 Microwave Technology
151(5)
2.5.3 Geoinformation System to Monitor Agriculture
156(3)
2.6 Microwave Radiometric Observations of Temperature Anomalies
159(9)
2.7 The Atmosphere Microwave Monitoring
168(10)
2.8 Microwave Radiometry in Remote Monitoring of the Ocean
178(8)
2.9 An Adaptive Technology to Classify and Interpret Remote-Sensing Data of the Water Surface Qualitatively
186(3)
2.10 A Device to Measure Geophysical and Hydrophysical Parameters
189(4)
2.11 Direct and Inverse Problems of Microwave Monitoring
193(6)
2.11.1 Typical Inverse Task of the Microwave Radiometry
193(4)
2.11.2 Estimation of Radiobrightness Response Function of the Ocean-Atmosphere System on Variations in Heat Fluxes
197(2)
2.12 Algorithms for Remote Data Processing
199(22)
2.12.1 Introduction
199(1)
2.12.2 Data Reconstruction Using the Harmonic Functions
200(3)
2.12.3 Method for Parametric Identification of Environmental Objects
203(1)
2.12.4 Method of Differential Approximation
204(3)
2.12.5 Quasi-Linearization Method
207(14)
3 Environmental Decision-Making 221(38)
3.1 Introduction
221(4)
3.2 Procedures for Classical and Sequential Decision-Making
225(4)
3.2.1 Classical Neyman-Pearson Decision-Making Procedure
225(2)
3.2.2 Sequential Decision-Making Procedure
227(2)
3.3 Decision-Making Procedure Using the Sequential Analysis
229(5)
3.4 Important Parameters of the Sequential Analysis Procedure
234(4)
3.5 Processing the Multichannel Information
238(6)
3.5.1 Introduction
238(1)
3.5.2 Multi-channel Statistical Analyzer
239(5)
3.6 Applications of the Sequential Decision-Making Procedure
244(5)
3.7 Disaster Decision-Making
249(10)
4 Ecoinformatics Problems of the World Ocean 259(96)
4.1 The Present Day of the World Ocean
259(3)
4.2 World Ocean and Inland Reservoirs
262(7)
4.3 Interactions Between the Atmosphere and the Ocean
269(8)
4.4 The Zonal Model of the Global Carbon Cycle in the Atmosphere-Ocean System
277(3)
4.5 Modelling the Carbon Cycle in the World Ocean
280(2)
4.6 Organic Carbon and Oceanic Ecosystems
282(43)
4.6.1 Models of the Oceanic Ecosystems
282(3)
4.6.2 Equations of the World Ocean Ecosystem Dynamics
285(4)
4.6.3 The Vertical Structure of the Ocean
289(5)
4.6.4 Model of the Peruvian Current Ecosystem
294(15)
4.6.5 Model of the Upwelling Ecosystem
309(16)
4.7 Biocomplexity Indicator as a Predictor of the Ecosystem State
325(5)
4.8 Oil and Gas Extraction in Seas
330(6)
4.9 Monitoring of the Oil and Gas Extraction Zone in the South-China Sea
336(5)
4.10 Estimation of Oil Hydrocarbon Pollution Parameters in Sea Water
341(3)
4.11 Adaptive Technologies and Sea Navigation
344(9)
4.12 Conclusion
353(2)
5 Ecoinformatics Problems of Global Climate Change 355(132)
5.1 Common Questions of Global Climate Change
355(8)
5.2 General Problems of Global Climate Dynamics
363(19)
5.3 Empirical Diagnostics of the Global Climate
382(20)
5.3.1 Introduction
382(2)
5.3.2 Air Temperature
384(3)
5.3.3 Snow and Ice Cover
387(4)
5.3.4 Sea Surface Level and Heat Content of the Ocean Upper Layer
391(4)
5.3.5 Other Climatic Parameters
395(2)
5.3.6 Concentrations of Greenhouse Gases and Anthropogenic Aerosol in the Atmosphere
397(4)
5.3.7 Paleoclimatic Information
401(1)
5.4 Interactive Components of Climate System
402(30)
5.4.1 Anomalous Situations and Climate
402(4)
5.4.2 Climate Change, Forests, and Agriculture
406(3)
5.4.3 Observational Data
409(8)
5.4.4 Climate-Forming Factors
417(10)
5.4.5 Contradictoriness of the Climate Study Results
427(5)
5.5 Climate, Energetics and Global Urbanization
432(15)
5.5.1 Climate and Civilization
432(5)
5.5.2 Climate and Energetics
437(10)
5.6 Thunderstorms as a Component of the Global Ecodynamics
447(5)
5.7 The Numerical Modeling of the 3-D Distribution of Aerosol and Climate
452(6)
5.8 An Expert System for the Physics of the Atmospheric Pollution
458(7)
5.8.1 The Structure of the Expert System
458(2)
5.8.2 Formation of the Database Components
460(2)
5.8.3 A Subsystem for Statistical Decisions
462(2)
5.8.4 A Subsystem for Control and Visualization
464(1)
5.9 Modeling Aerosol Transport in the Atmosphere
465(19)
5.9.1 Relationships Between the Scales of Atmospheric Mixing Processes and the Choice of Models
465(3)
5.9.2 Interrelationship Between the Types of Models and Aerosol Characteristics
468(6)
5.9.3 Types of Aerosol Models
474(10)
5.10 Ordinary Climate Parameterizations
484(3)
6 The Arctic Environmental Problems 487(102)
6.1 Introduction
487(6)
6.2 Climate and Cryosphere
493(8)
6.2.1 Cryosphere Interactions with the Global Climate System
493(6)
6.2.2 Some Problems of the Permafrost Melting Feedback to Global Climate Change
499(2)
6.3 Arctic Basin Pollution Problems
501(10)
6.4 The Spatial Simulation Model of the Arctic Ecosystem
511(29)
6.4.1 Simulation Model as a Tool for the Study of the Arctic Ecosystem
511(5)
6.4.2 Structure of the Simulation Model
516(4)
6.4.3 Description of Ecological Processes
520(5)
6.4.4 Description of the Hydrologic Cycle
525(2)
6.4.5 Simulation of Dispersion Processes for the Water Pollutants
527(2)
6.4.6 Simulation Results
529(9)
6.4.7 Summary and Conclusions
538(2)
6.5 The Angara-Yenisey River System Simulation Model
540(16)
6.5.1 Introduction
540(2)
6.5.2 Model Description
542(5)
6.5.3 In-Situ Measurements
547(6)
6.5.4 Experiments Using the Angara-Yenisey River System Simulation Model
553(3)
6.6 Arctic Biocomplexity
556(20)
6.6.1 Introduction
556(2)
6.6.2 Biocomplexity of the Arctic Tundra
558(5)
6.6.3 Biocomplexity Problem Related to Fisheries in the Okhotsk Sea
563(8)
6.6.4 Expert System for Monitoring of the Okhotsk Sea Environment
571(5)
6.7 Carbon Cycle Dynamics in the Arctic System
576(10)
6.8 Conclusion
586(3)
7 Tropical Cyclogenesis and Ecoinformatics Methods 589(44)
7.1 Introduction
589(1)
7.2 Ocean-Atmosphere System Phases
590(6)
7.3 Tropical Cyclone as Dynamic Category of the Environmental Phenomena
596(7)
7.4 Monitoring Data
603(6)
7.5 Percolation Procedure
609(10)
7.6 Predicting the Path of a Tropical Cyclone
619(4)
7.7 Searching the Indicator-Precursors of Tropical Hurricane Beginning
623(7)
7.8 Concluding Remarks and Future Problems
630(3)
8 Ecoinformatics and Soil-Plant Formations 633(88)
8.1 Methodology, Theory and Problems
633(4)
8.2 Global Dynamics of Land Ecosystems
637(9)
8.3 Modeling the Vegetation Dynamics
646(32)
8.3.1 General Approach to the Modeling in Biocoenology
646(4)
8.3.2 Biocoenotic Model
650(1)
8.3.3 Classification of Soil-Plant Formations and Their Archive
651(2)
8.3.4 Modeling the Forest Ecosystems
653(7)
8.3.5 Modeling the Energy Fluxes in the Atmosphere-Plant-Soil System
660(2)
8.3.6 A Model of Leaf Canopy Photosynthesis
662(5)
8.3.7 Modeling the Forest Age Structure
667(4)
8.3.8 Modeling the Production Processes in the Coniferous Forest
671(4)
8.3.9 Modeling Succession Processes in the Tundra-Taiga System
675(3)
8.4 Wildfires as Components of Global Ecodynamics
678(15)
8.4.1 Fires and Forest Ecosystem
678(4)
8.4.2 Wildfires, Dynamics of the Biosphere, and Climate
682(3)
8.4.3 Biomass Burning and Atmospheric Chemistry
685(2)
8.4.4 Wildfires and Carbon Cycle
687(2)
8.4.5 Wildfires and Biocomplexity
689(4)
8.5 The Role of Forests in CO2 Cycle
693(7)
8.6 Vegetation Media as the Object Under Study of Attenuation of Electromagnetic Waves
700(8)
8.7 Links Between Experiments, Algorithms, and Models
708(2)
8.8 Microwave Model of Vegetation Cover
710(5)
8.8.1 Two-Level Model of Vegetation Cover
710(3)
8.8.2 Analytical Model of Vegetation Cover
713(2)
8.9 Land Cover Classifications
715(6)
9 Operational Diagnostics, Estimation of the Scale of Damage and Aftermath Reduction of the Stressful Natural Processes 721(86)
9.1 Expert System for the Hydrophysical and Hydrochemical Investigations
721(11)
9.1.1 Principal Matters
721(6)
9.1.2 Simulation System
727(5)
9.2 Expert System for the Water Quality Control
732(9)
9.2.1 Fresh Water Problems
732(4)
9.2.2 Water Quality Monitoring in the Estuary
736(5)
9.3 Decision Making Under Dependence of Indicators
741(26)
9.3.1 The Natural Disasters as a Dynamic Category of Environmental Phenomena
741(6)
9.3.2 Decision Making and Indicators
747(7)
9.3.3 Decision Making and Spectrophotometric Technology
754(8)
9.3.4 Monitoring of Spatial Heterogeneous Water Systems
762(5)
9.4 Risk Control and Sustainable Development
767(4)
9.5 Managing Natural Resources
771(8)
9.5.1 Introduction
771(2)
9.5.2 Assessment of the State of the Ecologo-Economic System
773(2)
9.5.3 Simulation Model of the Ecologo-Economic System
775(4)
9.6 Risk Control in Cases of Natural Disasters
779(8)
9.7 Social and Human Dimensions of Risk
787(10)
9.8 Reducing Risks in Agriculture
797(8)
9.8.1 Introduction
797(3)
9.8.2 Practical Microwave Radiometric Risk Assessment of Agricultural Function
800(5)
9.9 Conclusion
805(2)
10 Ecoinformatics Problems in the Future World 807(38)
10.1 Problems, Perspectives and Waitings
807(4)
10.2 Global Survivability Problems
811(25)
10.2.1 Sustainable Development and Ecoinformatics
811(8)
10.2.2 Sustainable Development Model
819(4)
10.2.3 Study of the Simple Survivability Model
823(13)
10.3 Concluding Remarks About Global Humanity Problems
836(4)
10.4 Mission to Mars: Reliable Method for Liquid Solutions Diagnostics
840(5)
10.4.1 Introduction
840(1)
10.4.2 The Method Description
841(2)
10.4.3 Conclusion
843(2)
References 845(46)
Index 891