|
|
1 | (8) |
|
1.1 Introduction to the second edition |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 Changes in the second edition |
|
|
3 | (1) |
|
1.4 The R programming language for statistics and graphics |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (6) |
|
2.1 A matter of life and death |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (14) |
|
|
15 | (1) |
|
3.2 Darwin's maize pollination data |
|
|
16 | (12) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
Chapter 4 Reproducible Research |
|
|
29 | (10) |
|
4.1 The reproducibility crisis |
|
|
29 | (1) |
|
|
30 | (2) |
|
|
32 | (1) |
|
|
32 | (5) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
37 | (2) |
|
|
39 | (12) |
|
|
39 | (1) |
|
|
40 | (1) |
|
5.3 Differences between groups |
|
|
41 | (2) |
|
5.4 Standard deviations and standard errors |
|
|
43 | (2) |
|
5.5 The normal distribution and the central limit theorem |
|
|
45 | (3) |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
50 | (1) |
|
Appendix 5a R code for Fig. 5.1 |
|
|
50 | (1) |
|
|
51 | (20) |
|
|
51 | (1) |
|
6.2 A linear-model analysis for comparing groups |
|
|
52 | (5) |
|
6.3 Standard error of the difference |
|
|
57 | (1) |
|
|
58 | (2) |
|
6.5 Answering Darwin's question |
|
|
60 | (2) |
|
6.6 Relevelling to get the other treatment mean and standard error |
|
|
62 | (1) |
|
|
63 | (3) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (4) |
|
|
67 | (1) |
|
Appendix 6b Robust linear models |
|
|
68 | (1) |
|
|
68 | (3) |
|
|
71 | (14) |
|
|
71 | (1) |
|
|
72 | (1) |
|
7.3 The Janka timber hardness data |
|
|
73 | (2) |
|
|
75 | (1) |
|
7.5 Linear regression in R |
|
|
75 | (3) |
|
|
78 | (4) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (2) |
|
|
83 | (1) |
|
Appendix 7b Least squares linear regression |
|
|
84 | (1) |
|
|
85 | (12) |
|
|
85 | (1) |
|
8.2 Predicting timber hardness from wood density |
|
|
85 | (5) |
|
8.3 Confidence intervals and prediction intervals |
|
|
90 | (4) |
|
|
94 | (1) |
|
|
95 | (2) |
|
|
97 | (10) |
|
9.1 Significance testing: Time for t |
|
|
97 | (1) |
|
9.2 Student's f-test: Darwin's maize |
|
|
98 | (8) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (20) |
|
10.1 Comparisons using estimates and intervals |
|
|
107 | (1) |
|
10.2 Estimation-based analysis |
|
|
108 | (1) |
|
10.3 Descriptive statistics |
|
|
109 | (4) |
|
10.4 Inferential statistics |
|
|
113 | (6) |
|
10.5 Relating different types of interval and error bar |
|
|
119 | (5) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (2) |
|
Chapter 11 Analysis of Variance |
|
|
127 | (12) |
|
|
127 | (1) |
|
11.2 ANOVA tables: Darwin's maize |
|
|
128 | (4) |
|
11.3 Hypothesis testing: F-values |
|
|
132 | (3) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
138 | (1) |
|
Chapter 12 Factorial Designs |
|
|
139 | (22) |
|
|
139 | (1) |
|
|
139 | (3) |
|
12.3 Comparing three or more groups |
|
|
142 | (3) |
|
12.4 Two-way ANOVA (no interaction) |
|
|
145 | (3) |
|
12.5 Additive treatment effects |
|
|
148 | (4) |
|
12.6 Interactions: Factorial ANOVA |
|
|
152 | (6) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
159 | (2) |
|
Appendix 12a Code for Fig. 12.3 |
|
|
160 | (1) |
|
Chapter 13 Analysis of Covariance |
|
|
161 | (16) |
|
|
161 | (1) |
|
13.2 The agricultural pollution data |
|
|
162 | (3) |
|
13.3 ANCOVA with water stress and low-level ozone |
|
|
165 | (6) |
|
13.4 Interactions in ANCOVA |
|
|
171 | (1) |
|
13.5 General linear models |
|
|
172 | (3) |
|
|
175 | (1) |
|
|
176 | (1) |
|
Chapter 14 Linear Model Complexities |
|
|
177 | (18) |
|
|
177 | (1) |
|
14.2 Analysis of variance for balanced designs |
|
|
178 | (2) |
|
14.3 Analysis of variance with unbalanced designs |
|
|
180 | (4) |
|
14.4 ANOVA tables versus coefficients: When F and t can disagree |
|
|
184 | (2) |
|
14.5 Marginality of main effects and interactions |
|
|
186 | (6) |
|
|
192 | (1) |
|
|
192 | (3) |
|
Chapter 15 Generalized Linear Models |
|
|
195 | (14) |
|
|
195 | (1) |
|
15.2 The trouble with transformations |
|
|
196 | (4) |
|
15.3 The Box-Cox power transform |
|
|
200 | (3) |
|
15.4 Generalized Linear Models in R |
|
|
203 | (5) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
Chapter 16 GLMs for Count Data |
|
|
209 | (8) |
|
|
209 | (1) |
|
|
210 | (3) |
|
16.3 Quasi-maximum likelihood |
|
|
213 | (2) |
|
|
215 | (2) |
|
|
217 | (12) |
|
17.1 Binomial counts and proportion data |
|
|
217 | (1) |
|
|
218 | (2) |
|
17.3 GLM for binomial counts |
|
|
220 | (5) |
|
17.4 Alternative link functions |
|
|
225 | (3) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
Chapter 18 GLMs for Binary Data |
|
|
229 | (10) |
|
|
229 | (1) |
|
18.2 The wells data set for the binary GLM example |
|
|
230 | (6) |
|
|
236 | (2) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (12) |
|
|
239 | (1) |
|
19.2 A binomial GLM analysis of the Challenger binary data |
|
|
239 | (7) |
|
|
246 | (3) |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
|
Chapter 20 A Very Short Introduction to R |
|
|
251 | (8) |
|
|
251 | (2) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
254 | (5) |
Index |
|
259 | |