Muutke küpsiste eelistusi

Non-negative Matrix Factorization Techniques: Advances in Theory and Applications Softcover reprint of the original 1st ed. 2016 [Pehme köide]

Edited by
  • Formaat: Paperback / softback, 194 pages, kõrgus x laius: 235x155 mm, kaal: 3168 g, VII, 194 p., 1 Paperback / softback
  • Sari: Signals and Communication Technology
  • Ilmumisaeg: 23-Aug-2016
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662517000
  • ISBN-13: 9783662517000
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 194 pages, kõrgus x laius: 235x155 mm, kaal: 3168 g, VII, 194 p., 1 Paperback / softback
  • Sari: Signals and Communication Technology
  • Ilmumisaeg: 23-Aug-2016
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662517000
  • ISBN-13: 9783662517000

This book collects new results, concepts and further developments of NMF. The open problems discussed include, e.g. in bioinformatics: NMF and its extensions applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining etc. The research results previously scattered in different scientific journals and conference proceedings are methodically collected and presented in a unified form. While readers can read the book chapters sequentially, each chapter is also self-contained. This book can be a good reference work for researchers and engineers interested in NMF, and can also be used as a handbook for students and professionals seeking to gain a better understanding of the latest applications of NMF.

From Binary NMF to Variational Bayes NMF: A Probabilistic Approach.- Non Negative Matrix Factorizations for Intelligent Data Analysis.- Automatic extractive multi-document summarization based on Archetypal Analysis.- Bounded Matrix Low Rank Approximation.- A Modified NMF-based Filter Bank Approach for Enhancement of Speech Data in Non-stationary Noise.- Separation of stellar spectra based on non-negativity and parametric modelling of mixing operator.- NMF in MR Spectroscopy.- Time-Scale Based Segmentation for Degraded PCG Signals Using NMF.