Muutke küpsiste eelistusi

Nonabsolute Integration On Measure Spaces [Kõva köide]

(Ntu, S'pore)
  • Formaat: Hardback, 248 pages
  • Sari: Series In Real Analysis 14
  • Ilmumisaeg: 18-Dec-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813221968
  • ISBN-13: 9789813221963
Teised raamatud teemal:
  • Formaat: Hardback, 248 pages
  • Sari: Series In Real Analysis 14
  • Ilmumisaeg: 18-Dec-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813221968
  • ISBN-13: 9789813221963
Teised raamatud teemal:
This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock-Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers.It is widely acknowledged that the biggest difficulty in defining a Henstock-Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of 'intervals' in the abstract setting. In this book the author shows a creative and innovative way of defining 'intervals' in measure spaces, and prove many interesting and important results including the well-known Radon-Nikodým theorem.
Foreword vii
Preface ix
Synopsis xiii
1 A Nonabsolute Integral on Measure Spaces
1(38)
1.1 Preliminaries
2(8)
1.2 Existence of a Division and the H-Integral
10(12)
1.3 Simple Properties of the H-Integral
22(17)
2 The Absolute H-Integral and the McShane-Type Integrals
39(32)
2.1 The Absolute H-Integral and the M-Integral
40(15)
2.2 The H-Integral and the Lebesgue Integral
55(5)
2.3 The Davies Integral and the Davies-McShane Integral
60(11)
3 Further Results of the H-Integral
71(60)
3.1 A Necessary and Sufficient Condition for H-Integrability
72(9)
3.2 Generalised Absolute Continuity and Equiintegrability
81(32)
3.3 The Controlled Convergence Theorem
113(18)
4 The Radon-Nikodym Theorem for the H-Integral
131(28)
4.1 The Main Theorem
132(13)
4.2 Descriptive Definition of the H-Integral
145(6)
4.3 Henstock Integration in the Euclidean Space
151(8)
5 Harnack Extension and Convergence Theorems for the H-Integral
159(44)
5.1 The H-Integral on Metric Spaces
159(3)
5.2 Harnack Extension for the H-Integral
162(7)
5.3 The Category Argument
169(17)
5.4 An Improved Version of the Controlled Convergence Theorem
186(17)
Bibliography 203(6)
Glossary 209(16)
Index 225