Muutke küpsiste eelistusi

Nonautonomous Bifurcation Theory: Concepts and Tools 1st ed. 2023 [Pehme köide]

  • Formaat: Paperback / softback, 156 pages, kõrgus x laius: 235x155 mm, kaal: 267 g, 1 Illustrations, black and white; X, 156 p. 1 illus., 1 Paperback / softback
  • Sari: Frontiers in Applied Dynamical Systems: Reviews and Tutorials 10
  • Ilmumisaeg: 02-Jun-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031298411
  • ISBN-13: 9783031298417
Teised raamatud teemal:
  • Pehme köide
  • Hind: 81,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 95,44 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 156 pages, kõrgus x laius: 235x155 mm, kaal: 267 g, 1 Illustrations, black and white; X, 156 p. 1 illus., 1 Paperback / softback
  • Sari: Frontiers in Applied Dynamical Systems: Reviews and Tutorials 10
  • Ilmumisaeg: 02-Jun-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031298411
  • ISBN-13: 9783031298417
Teised raamatud teemal:
Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.

Arvustused

The authors aim at a survey where recent main developments and results are discussed, with many references to the literature for more concrete examples, details and proofs. This text offers a start to the field with many pointers to literature. (Hil G. E. Meijer, Mathematical Reviews, January, 2025) 

Introduction.- Part I Nonautonomous differential equations - Spectral
theory, stability and continuation.- Nonautonomous bifurcation.- Reduction
techniques.- Part II Nonautonomous difference equations - Spectral theory,
stability and continuation.- Nonautonomous bifurcation.- Reduction techniques.