Muutke küpsiste eelistusi

Nonclassical Light from Semiconductor Lasers and LEDs Softcover reprint of the original 1st ed. 2001 [Pehme köide]

  • Formaat: Paperback / softback, 244 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, XIV, 244 p., 1 Paperback / softback
  • Sari: Springer Series in Photonics 5
  • Ilmumisaeg: 05-Oct-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642632084
  • ISBN-13: 9783642632082
  • Pehme köide
  • Hind: 159,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 188,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 244 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, XIV, 244 p., 1 Paperback / softback
  • Sari: Springer Series in Photonics 5
  • Ilmumisaeg: 05-Oct-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642632084
  • ISBN-13: 9783642632082
The quantum statistical properties of light generated in a semiconductor laser and a light-emitting diode (LED) have been a ?eld of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices, performed mostly at Stanford University. When a semiconductor material is used as the active medium to generate photons, as in semiconductor lasers and LEDs, the ?ow of carriers (electrons andholes)isconvertedintoa owofphotons. Providedthattheconversionis fast and e cient, the statistical properties of the carriers (pump noise) can be transferred to the photons; if pump noise can be suppressed to below the shot noise value, the noise in the photon output can also be suppressed below thePoissonlimit. Sinceelectronsandholesarefermionsandhavecharges,the statisticalpropertiesoftheseparticlescanbesigni cantlydi erentfromthose of photons if the structure of the light-emitting device is properly designed to provide interaction between these particles. There has been a discrepancy between the theoretical understanding and experimental observation of noise in a macroscopic resistor until very - cently. The dissipation that electrons experience in a resistor is expected to accompany the ?uctuation due to partition noise, leading to shot noise in the large dissipation limit as is the case with photons. Experimental observation shows that thermal noise, expected only in a thermal-equilibrium situation (zero-bias condition), is the only source of noise featured by a resistor, - dependent of the current.

Muu info

Springer Book Archives
1. Nonclassical Light.- 1.1 Classical Description of Light.- 1.2 Quantum
Description of Light.- 1.3 Coherent State, Squeezed State and Number-Phase
Squeezed State.- 1.4 Quantum Theory of Photodetection and Sub-Poisson Photon
Distribution.- 1.5 Quantum Theory of Second-Order Coherence and Photon
Antibunching.- 1.6 Quantum Theory of Photocurrent Fluctuation and Squeezing.-
2. Noise of p-n Junction Light Emitters.- 2.1 Introduction.- 2.2 Junction
Voltage Dynamics: the Poisson Equation.- 2.3 Semiclassical Langevin Equation
for Junction Voltage Dynamics.- 2.4 Noise Analysis of an LED.- 2.5 Summary.-
3. Sub-Poissonian Light Generation in Light-Emitting Diodes.- 3.1
Introduction.- 3.2 Physical Mechanism of Pump-Noise Suppression.- 3.3
Measurement of the Squeezing Bandwidth.- 3.4 Summary.-
4. Amplitude-Squeezed
Light Generation in Semiconductor Lasers.- 4.1 Introduction.- 4.2
Interferometric Measurement of Longitudinal-Mode-Partition Noise.- 4.3
Grating-Feedback External-Cavity Semiconductor Laser.- 4.4 Injection-Locked
Semiconductor Laser.- 4.5 Summary.-
5. Excess Intensity Noise of a
Semiconductor Laser with Nonlinear Gain and Loss.- 5.1 Introduction.- 5.2
Physical Models for Nonlinearity.- 5.3 Noise Analysis Using Langevin Rate
Equations.- 5.4 Numerical Results.- 5.5 Discussion: Effect of Saturable
Loss.- 5.6 Comparison of Two Laser Structures with Respect to Saturable
Loss.- 5.7 Summary.-
6. Transverse-Junction-Stripe Lasers for Squeezed Light
Generation.- 6.1 Introduction.- 6.2 Fabrication.- 6.3 DC Characterization:
Threshold, Loss and Quantum Efficiency.- 6.4 Intensity Noise.- 6.5 Summary.-
7. Sub-Shot-Noise FM Spectroscopy.- 7.1 Introduction.- 7.2 Advantages of
Semiconductor Lasers.- 7.3 Signal-to-Noise Ratio (SNR).- 7.4 Realization of
Sub-Shot-Noise FM Spectroscopy.- 7.5 Experimental Results.- 7.6 Future
Prospects.-
8. Sub-Shot-Noise FM Noise Spectroscopy.- 8.1 Introduction.- 8.2
Principle of FM Noise Spectroscopy.- 8.3 Signal-to-Noise Ratio and the
Advantage of Amplitude Squeezing.- 8.4 Sub-Shot-Noise Spectroscopy.- 8.5
Phase-Sensitive FM Noise Spectroscopy.- 8.6 Summary.-
9. Sub-Shot-Noise
Interferometry.- 9.1 Introduction.- 9.2 Sensitivity Limit of an Optical
Interferometer.- 9.3 Amplitude-Squeezed Light Injection in a Dual-Input
Mach-Zehnder Interferometer.- 9.4 Sub-Shot-Noise Phase Measurement.- 9.5
Dual-Input Michelson Interferometer.- 9.6 Summary and Future Prospects.-
10.
Coulomb Blockade Effect in Mesoscopic p-n Junctions.- 10.1 Introduction.-
10.2 Calculation of Resonant Tunneling Rates.- 10.3 Coulomb Blockade Effect
on Resonant Tunneling.- 10.4 Coulomb Staircase.- 10.5 Turnstile Operation.-
10.6 Monte-Carlo Simulations.- 10.7 Summary.-
11. Single-Photon Generation in
a Single-Photon Turnstile Device.- 11.1 Introduction.- 11.2 Device
Fabrication.- 11.3 Observation of the Coulomb Staircase.- 11.4 Single-Photon
Turnstile Device.- 11.5 Summary.-
12. Single-Photon Detection with
Visible-Light Photon Counter.- 12.1 Introduction.- 12.2 Comparison of
Single-Photon Detectors.- 12.3 Operation Principle of a VLPC.- 12.4
Single-Photon Detection System Based on a VLPC.- 12.5 Quantum Efficiency of a
VLPC.- 12.6 Theory of Noise in Avalanche Multiplication.- 12.7 Excess Noise
Factor of a VLPC.- 12.8 Two-Photon Detection with a VLPC.- 12.9 Summary.-
13.
Future Prospects.- 13.1 Introduction.- 13.2 Regulated and Entangled Photons
from a Single Quantum Dot.- 13.3 Single-Mode Spontaneous Emission from a
Single Quantum Dot in a Three-Dimensional Microcavity.- 13.4 Lasing and
Squeezing of Exciton-Polaritons in a Semiconductor Microcavity.- A. Appendix:
Noise and Correlation Spectra for Light-Emitting Diode.- A.1 Linearization.-
A.2 LED Photon Noise Spectral Density.- A.3 External Current Noise Spectral
Density.- A.4 Junction-Voltage-Carrier-Number Correlation.- A.5 Photon-Flux
-Junction-Voltage Correlation.- References.