Muutke küpsiste eelistusi

Nonlinear Differential Equations and Dynamical Systems 2nd rev. and expanded ed., 3rd printing 2006 [Pehme köide]

  • Formaat: Paperback / softback, 306 pages, kõrgus x laius: 235x155 mm, kaal: 1000 g, 2 Illustrations, black and white; X, 306 p. 2 illus., 1 Paperback / softback
  • Sari: Universitext
  • Ilmumisaeg: 06-Sep-1996
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540609342
  • ISBN-13: 9783540609346
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 306 pages, kõrgus x laius: 235x155 mm, kaal: 1000 g, 2 Illustrations, black and white; X, 306 p. 2 illus., 1 Paperback / softback
  • Sari: Universitext
  • Ilmumisaeg: 06-Sep-1996
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540609342
  • ISBN-13: 9783540609346
For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

Muu info

Springer Book Archives
1 Introduction
1(6)
1.1 Definitions and notation
1(2)
1.2 Existence and uniqueness
3(1)
1.3 Gronwall's inequality
4(3)
2 Autonomous equations
7(18)
2.1 Phase-space, orbits
7(3)
2.2 Critical points and linearisation
10(4)
2.3 Periodic solutions
14(2)
2.4 First integrals and integral manifolds
16(5)
2.5 Evolution of a volume element, Liouville's theorem
21(2)
2.6 Exercises
23(2)
3 Critical points
25(13)
3.1 Two-dimensional linear systems
25(4)
3.2 Remarks on three-dimensional linear systems
29(2)
3.3 Critical points of nonlinear equations
31(5)
3.4 Exercises
36(2)
4 Periodic solutions
38(21)
4.1 Bendixson's criterion
38(2)
4.2 Geometric auxiliaries, preparation for the Poincare-Bendixson theorem
40(3)
4.3 The Poincare-Bendixson theorem
43(4)
4.4 Applications of the Poincare-Bendixson theorem
47(6)
4.5 Periodic solutions in Rn
53(4)
4.6 Exercises
57(2)
5 Introduction to the theory of stability
59(10)
5.1 Simple examples
59(2)
5.2 Stability of equilibrium solutions
61(1)
5.3 Stability of periodic solutions
62(4)
5.4 Linearisation
66(1)
5.5 Exercises
67(2)
6 Linear Equations
69(14)
6.1 Equations with constant coefficients
69(2)
6.2 Equations with coefficients which have a limit
71(4)
6.3 Equations with periodic coefficients
75(5)
6.4 Exercises
80(3)
7 Stability by linearisation
83(13)
7.1 Asymptotic stability of the trivial solution
83(5)
7.2 Instability of the trivial solution
88(3)
7.3 Stability of periodic solutions of autonomous equations
91(2)
7.4 Exercises
93(3)
8 Stability analysis by the direct method
96(14)
8.1 Introduction
96(2)
8.2 Lyapunov functions
98(5)
8.3 Hamiltonian systems and systems with first integrals
103(4)
8.4 Applications and examples
107(1)
8.5 Exercises
108(2)
9 Introduction to perturbation theory
110(12)
9.1 Background and elementary examples
110(3)
9.2 Basic material
113(3)
9.3 Naive expansion
116(3)
9.4 The Poincare expansion theorem
119(1)
9.5 Exercises
120(2)
10 The Poincare-Lindstedt method
122(14)
10.1 Periodic solutions of autonomous second-order equations
122(5)
10.2 Approximation of periodic solutions on arbitary long time-scales
127(2)
10.3 Periodic solutions of equations with forcing terms
129(2)
10.4 The existence of periodic solutions
131(4)
10.5 Exercises
135(1)
11 The method of averaging
136(30)
11.1 Introduction
136(2)
11.2 The Lagrange standard form
138(2)
11.3 Averaging in the periodic case
140(4)
11.4 Averaging in the general case
144(3)
11.5 Adiabatic invariants
147(3)
11.6 Averaging over one angle, resonance manifolds
150(4)
11.7 Averaging over more than one angle, an introduction
154(3)
11.8 Periodic solutions
157(5)
11.9 Exercises
162(4)
12 Relaxation Oscillations
166(7)
12.1 Introduction
166(1)
12.2 Mechanical systems with large friction
167(1)
12.3 The van der Pol-equation
168(2)
12.4 The Volterra-Lotka equations
170(2)
12.5 Exercises
172(1)
13 Bifurcation Theory
173(20)
13.1 Introduction
173(2)
13.2 Normalisation
175(5)
13.3 Averaging and normalisation
180(2)
13.4 Centre manifolds
182(4)
13.5 Bifurcation of equilibrium solutions and Hopf bifurcation
186(4)
13.6 Exercises
190(3)
14 Chaos
193(31)
14.1 Introduction and historical context
193(1)
14.2 The Lorenz-equations
194(3)
14.3 Maps associated with the Lorenz-equations
197(2)
14.4 One-dimensional dynamics
199(4)
14.5 One-dimensional chaos: the quadratic map
203(4)
14.6 One-dimensional chaos: the tent map
207(1)
14.7 Fractal sets
208(5)
14.8 Dynamical characterisations of fractal sets
213(3)
14.9 Lyapunov exponents
216(2)
14.10 Ideas and references to the literature
218(6)
15 Hamiltonian systems
224(24)
15.1 Introduction
224(2)
15.2 A nonlinear example with two degrees of freedom
226(4)
15.3 Birkhoff-normalisation
230(3)
15.4 The phenomenon of recurrence
233(3)
15.5 Periodic solutions
236(2)
15.6 Invariant tori and chaos
238(4)
15.7 The KAM theorem
242(4)
15.8 Exercises
246(2)
Appendix 1: The Morse lemma 248(2)
Appendix 2: Linear periodic equations with a small parameter 250(2)
Appendix 3: Trigonometric formulas and averages 252(1)
Appendix 4: A sketch of Cotton's proof of the stable and unstable manifold theorem 3.3 253(2)
Appendix 5: Bifurcations of self-excited oscillations 255(5)
Appendix 6: Normal forms of Hamiltonian systems near equilibria 260(7)
Answers and hints to the exercises 267(28)
References 295(6)
Index 301


Ferdinand Verhulst was born in Amsterdam, The Netherlands, in 1939.

He graduated at the University of Amsterdam in Astrophysics and Mathematics. A period of five years at the Technological University of Delft, started his interest in technological problems, resulting in various cooperations with engineers. His other interests include the methods and applications of asymptotic analysis, nonlinear oscillations and wave theory.

He holds a chair of dynamical systems at the department of mathematics at the University of Utrecht.

Among his other interests are a publishing company, Epsilon Uitgaven, that he founded in 1985, and the relation between dynamical systems and psychoanalysis.

For more information see www.math.uu.nl/people/verhulst