Nonlinear Dynamics and Chaos |
|
|
Preface to the Second Edition |
|
|
ix | |
|
Preface to the First Edition |
|
|
xi | |
|
|
1 | (14) |
|
1.0 Chaos, Fractals, and Dynamics |
|
|
1 | (1) |
|
1.1 Capsule History of Dynamics |
|
|
2 | (2) |
|
1.2 The Importance of Being Nonlinear |
|
|
4 | (5) |
|
1.3 A Dynamical View of the World |
|
|
9 | (6) |
|
Part I One-Dimensional Flows |
|
|
|
|
15 | (30) |
|
|
15 | (1) |
|
2.1 A Geometric Way of Thinking |
|
|
16 | (2) |
|
2.2 Fixed Points and Stability |
|
|
18 | (3) |
|
|
21 | (3) |
|
2.4 Linear Stability Analysis |
|
|
24 | (2) |
|
2.5 Existence and Uniqueness |
|
|
26 | (2) |
|
2.6 Impossibility of Oscillations |
|
|
28 | (2) |
|
|
30 | (2) |
|
2.8 Solving Equations on the Computer |
|
|
32 | (4) |
|
|
36 | (9) |
|
|
45 | (50) |
|
|
45 | (1) |
|
3.1 Saddle-Node Bifurcation |
|
|
46 | (5) |
|
3.2 Transcritical Bifurcation |
|
|
51 | (3) |
|
|
54 | (2) |
|
3.4 Pitchfork Bifurcation |
|
|
56 | (6) |
|
3.5 Overdamped Bead on a Rotating Hoop |
|
|
62 | (8) |
|
3.6 Imperfect Bifurcations and Catastrophes |
|
|
70 | (4) |
|
|
74 | (6) |
|
|
80 | (15) |
|
|
95 | (30) |
|
|
95 | (1) |
|
4.1 Examples and Definitions |
|
|
95 | (2) |
|
|
97 | (1) |
|
4.3 Nonuniform Oscillator |
|
|
98 | (5) |
|
|
103 | (2) |
|
|
105 | (4) |
|
4.6 Superconducting Josephson Junctions |
|
|
109 | (6) |
|
|
115 | (10) |
|
Part II Two-Dimensional Flows |
|
|
|
|
125 | (21) |
|
|
125 | (1) |
|
5.1 Definitions and Examples |
|
|
125 | (6) |
|
5.2 Classification of Linear Systems |
|
|
131 | (8) |
|
|
139 | (3) |
|
|
142 | (4) |
|
|
146 | (52) |
|
|
146 | (1) |
|
|
146 | (3) |
|
6.2 Existence, Uniqueness, and Topological Consequences |
|
|
149 | (2) |
|
6.3 Fixed Points and Linearization |
|
|
151 | (5) |
|
|
156 | (4) |
|
|
160 | (4) |
|
|
164 | (4) |
|
|
168 | (6) |
|
|
174 | (7) |
|
|
181 | (17) |
|
|
198 | (46) |
|
|
198 | (1) |
|
|
199 | (2) |
|
7.2 Ruling Out Closed Orbits |
|
|
201 | (4) |
|
7.3 Poincare—Bendixson Theorem |
|
|
205 | (7) |
|
|
212 | (1) |
|
7.5 Relaxation Oscillations |
|
|
213 | (4) |
|
7.6 Weakly Nonlinear Oscillators |
|
|
217 | (13) |
|
|
230 | (14) |
|
|
244 | (65) |
|
|
244 | (1) |
|
8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations |
|
|
244 | (7) |
|
|
251 | (6) |
|
8.3 Oscillating Chemical Reactions |
|
|
257 | (7) |
|
8.4 Global Bifurcations of Cycles |
|
|
264 | (4) |
|
8.5 Hysteresis in the Driven Pendulum and Josephson Junction |
|
|
268 | (8) |
|
8.6 Coupled Oscillators and Quasiperiodicity |
|
|
276 | (5) |
|
|
281 | (6) |
|
|
287 | (22) |
|
|
|
|
309 | (46) |
|
|
309 | (1) |
|
|
310 | (9) |
|
9.2 Simple Properties of the Lorenz Equations |
|
|
319 | (6) |
|
9.3 Chaos on a Strange Attractor |
|
|
325 | (8) |
|
|
333 | (4) |
|
9.5 Exploring Parameter Space |
|
|
337 | (5) |
|
9.6 Using Chaos to Send Secret Messages |
|
|
342 | (6) |
|
|
348 | (7) |
|
|
355 | (50) |
|
|
355 | (1) |
|
10.1 Fixed Points and Cobwebs |
|
|
356 | (4) |
|
10.2 Logistic Map: Numerics |
|
|
360 | (4) |
|
10.3 Logistic Map: Analysis |
|
|
364 | (4) |
|
|
368 | (5) |
|
|
373 | (3) |
|
10.6 Universality and Experiments |
|
|
376 | (10) |
|
|
386 | (8) |
|
|
394 | (11) |
|
|
405 | (24) |
|
|
405 | (1) |
|
11.1 Countable and Uncountable Sets |
|
|
406 | (2) |
|
|
408 | (3) |
|
11.3 Dimension of Self-Similar Fractals |
|
|
411 | (5) |
|
|
416 | (2) |
|
11.5 Pointwise and Correlation Dimensions |
|
|
418 | (5) |
|
|
423 | (6) |
|
|
429 | |
|
|
429 | (1) |
|
12.1 The Simplest Examples |
|
|
429 | (6) |
|
|
435 | (5) |
|
|
440 | (3) |
|
12.4 Chemical Chaos and Attractor Reconstruction |
|
|
443 | (4) |
|
12.5 Forced Double-Well Oscillator |
|
|
447 | (7) |
|
|
454 | (6) |
|
Answers to Selected Exercises |
|
|
460 | (10) |
|
|
470 | (13) |
|
|
483 | (4) |
|
|
487 | |
Nonlinear Dynamics and Chaos: Student Solutions Manual |
|
|
|
1 | (18) |
|
2.1 A Geometric Way of Thinking |
|
|
1 | (1) |
|
2.2 Fixed Points and Stability |
|
|
2 | (5) |
|
|
7 | (2) |
|
2.4 Linear Stability Analysis |
|
|
9 | (2) |
|
2.5 Existence and Uniqueness |
|
|
11 | (2) |
|
2.6 Impossibility of Oscillations |
|
|
13 | (1) |
|
|
13 | (1) |
|
2.8 Solving Equations on the Computer |
|
|
14 | (5) |
|
|
19 | (46) |
|
3.1 Saddle-Node Bifurcation |
|
|
19 | (8) |
|
3.2 Transcritical Bifurcation |
|
|
27 | (4) |
|
|
31 | (2) |
|
3.4 Pitchfork Bifurcation |
|
|
33 | (10) |
|
3.5 Overdamped Bead on a Rotating Hoop |
|
|
43 | (2) |
|
3.6 Imperfect Bifurcations and Catastrophes |
|
|
45 | (10) |
|
|
55 | (10) |
|
|
65 | (22) |
|
4.1 Examples and Definitions |
|
|
65 | (1) |
|
|
66 | (1) |
|
4.3 Nonuniform Oscillator |
|
|
67 | (8) |
|
|
75 | (2) |
|
|
77 | (3) |
|
4.6 Superconducting Josephson Junctions |
|
|
80 | (7) |
|
|
87 | (16) |
|
5.1 Definitions and Examples |
|
|
87 | (5) |
|
5.2 Classification of Linear Systems |
|
|
92 | (9) |
|
|
101 | (2) |
|
|
103 | (70) |
|
|
103 | (6) |
|
6.2 Existence, Uniqueness, and Topological Consequences |
|
|
109 | (1) |
|
6.3 Fixed Points and Linearization |
|
|
110 | (7) |
|
|
117 | (12) |
|
|
129 | (16) |
|
|
145 | (15) |
|
|
160 | (4) |
|
|
164 | (9) |
|
|
173 | (46) |
|
|
173 | (6) |
|
7.2 Ruling Out Closed Orbits |
|
|
179 | (9) |
|
7.3 Poincare-Bendixson Theorem |
|
|
188 | (9) |
|
|
197 | (1) |
|
7.5 Relaxation Oscillations |
|
|
198 | (5) |
|
7.6 Weakly Nonlinear Oscillators |
|
|
203 | (16) |
|
|
219 | (54) |
|
8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations |
|
|
219 | (7) |
|
|
226 | (11) |
|
8.3 Oscillating Chemical Reactions |
|
|
237 | (4) |
|
8.4 Global Bifurcations of Cycles |
|
|
241 | (7) |
|
8.5 Hysteresis in the Driven Pendulum and Josephson Junction |
|
|
248 | (5) |
|
8.6 Coupled Oscillators and Quasiperiodicity |
|
|
253 | (14) |
|
|
267 | (6) |
|
|
273 | (34) |
|
|
273 | (3) |
|
9.2 Simple Properties of the Lorenz Equations |
|
|
276 | (3) |
|
9.3 Chaos on a Strange Attractor |
|
|
279 | (13) |
|
|
292 | (1) |
|
9.5 Exploring Parameter Space |
|
|
292 | (11) |
|
9.6 Using Chaos to Send Secret Messages |
|
|
303 | (4) |
|
|
307 | (52) |
|
10.1 Fixed Points and Cobwebs |
|
|
307 | (11) |
|
10.2 Logistic Map: Numerics |
|
|
318 | (5) |
|
10.3 Logistic Map: Analysis |
|
|
323 | (8) |
|
|
331 | (8) |
|
|
339 | (3) |
|
10.6 Universality and Experiments |
|
|
342 | (10) |
|
|
352 | (7) |
|
|
359 | (12) |
|
11.1 Countable and Uncountable Sets |
|
|
359 | (1) |
|
|
360 | (2) |
|
11.3 Dimension of Self-Similar Fractals |
|
|
362 | (4) |
|
|
366 | (3) |
|
11.5 Pointwise and Correlation Dimensions |
|
|
369 | (2) |
|
|
371 | |
|
12.1 The Simplest Examples |
|
|
371 | (10) |
|
|
381 | (6) |
|
|
387 | (2) |
|
12.4 Chemical Chaos and Attractor Reconstruction |
|
|
389 | (2) |
|
12.5 Forced Double-Well Oscillator |
|
|
391 | |