Muutke küpsiste eelistusi

Nonlinear Equations in the Applied Sciences [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 496 pages, kõrgus: 230 mm, kaal: 795 g, index
  • Sari: Mathematics in Science & Engineering
  • Ilmumisaeg: 07-Jul-1991
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0120567520
  • ISBN-13: 9780120567522
Teised raamatud teemal:
  • Kõva köide
  • Hind: 75,48 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 496 pages, kõrgus: 230 mm, kaal: 795 g, index
  • Sari: Mathematics in Science & Engineering
  • Ilmumisaeg: 07-Jul-1991
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0120567520
  • ISBN-13: 9780120567522
Teised raamatud teemal:
In the developing area of nonlinear mathematics, there are a large number of classes of nonlinear equations which have received attention. This collection of 11 articles addresses a number of physically motivated systems for which considerable theory is available, such as reaction-diffusion systems and elasticity. Theories that are available for wider classes of equations include discussions of Lie symmetries, improperly posed problems and integrable nonlinear equations. The main purpose of the book, however, is to address real situations. The range of applications presented to the reader is intended to help to make the developing studies of nonlinear mathematics more understandable.
Improperly posed problems for nonlinear partial differential equations,
K.A. Ames; symmetry in nonlinear mechanics, W.F. Ames; geometry of the
Melnikov vector, S.N. Chow and M. Yamashita; nonlinear equations, A.S. Fokas;
Hamiltonian structure and integrability, B. Fuchssteiner; symmetric chaos, G.
King and I. Steward; Backlund and reciprocal transformations - gauge
connections, B.G. Konopelchenko and C. Rogers; nonlinear reaction-diffusion
systems, R.H. Martin, Jr. and M. Pierre; Riccati-type pseudopotentials and
their applications, M.C. Nucci; nonlinear elasticity - incremental equations
and bifurcation phenomena, R.W. Ogden.