Muutke küpsiste eelistusi

Nonlinear Fiber Optics 6th edition [Pehme köide]

(Institute of Optics, University of Rochester, NY, USA)
  • Formaat: Paperback / softback, 728 pages, kõrgus x laius: 235x191 mm, kaal: 1500 g
  • Ilmumisaeg: 15-Aug-2019
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0128170425
  • ISBN-13: 9780128170427
Teised raamatud teemal:
  • Formaat: Paperback / softback, 728 pages, kõrgus x laius: 235x191 mm, kaal: 1500 g
  • Ilmumisaeg: 15-Aug-2019
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0128170425
  • ISBN-13: 9780128170427
Teised raamatud teemal:

Nonlinear Fiber Optics, Sixth Edition, provides an up-to-date accounting of the nonlinear phenomena occurring inside optical fibers in telecommunications infrastructure and in the medical field. This new edition includes a general update to reflect the most recent research, extensive updates to chapter 13 on Supercontinuum Generation that reflect the use of chalcogenide fibers that extend Supercontinuum into the mid-infrared region, and a new chapter devoted to the nonlinear optics of multimode and multicore fibers. This book is ideal for researchers and graduate students in photonics, optical engineering and communication engineering.

  • Provides an update to a classic book on the subject of nonlinear fiber optics
  • Presents the latest research on Supercontinuum Generation
  • Includes a new chapter on nonlinear optics of multimode and multicore fibers
Author biography xvii
Preface xix
1 Introduction
1(26)
1.1 Historical perspective
1(2)
1.2 Fiber characteristics
3(12)
1.2.1 Material and fabrication
4(1)
1.2.2 Fiber losses
5(1)
1.2.3 Chromatic dispersion
6(5)
1.2.4 Polarization-mode dispersion
11(4)
1.3 Fiber nonlinearities
15(4)
1.3.1 Nonlinear refraction
15(1)
1.3.2 Stimulated inelastic scattering
16(2)
1.3.3 Importance of nonlinear effects
18(1)
1.4 Overview
19(8)
Problems
22(1)
References
22(5)
2 Pulse propagation in fibers
27(30)
2.1 Maxwell's equations
27(2)
2.2 Fiber modes
29(5)
2.2.1 Eigenvalue equation
30(2)
2.2.2 Characteristics of the fundamental mode
32(2)
2.3 Pulse-propagation equation
34(12)
2.3.1 Nonlinear wave equation
34(6)
2.3.2 Higher-order nonlinear effects
40(2)
2.3.3 Raman response function and its impact
42(4)
2.4 Numerical methods
46(11)
2.4.1 Split-step Fourier method
46(4)
2.4.2 Finite-difference methods
50(2)
Problems
52(1)
References
53(4)
3 Group-velocity dispersion
57(28)
3.1 Different propagation regimes
57(2)
3.2 Dispersion-induced pulse broadening
59(10)
3.2.1 Gaussian pulses
60(2)
3.2.2 Chirped Gaussian pulses
62(2)
3.2.3 Hyperbolic secant pulses
64(1)
3.2.4 Super-Gaussian pulses
65(3)
3.2.5 Experimental results
68(1)
3.3 Third-order dispersion
69(7)
3.3.1 Chirped Gaussian pulses
70(1)
3.3.2 Broadening factor
71(3)
3.3.3 Ultrashort-pulse measurements
74(2)
3.4 Dispersion management
76(9)
3.4.1 Dispersion compensation
76(2)
3.4.2 Compensation of third-order dispersion
78(2)
3.4.3 Dispersion-varying fibers
80(1)
Problems
81(1)
References
82(3)
4 Self-phase modulation
85(42)
4.1 SPM-induced spectral changes
85(10)
4.1.1 Nonlinear phase shift
85(3)
4.1.2 Changes in pulse spectra
88(2)
4.1.3 Effect of pulse shape and initial chirp
90(3)
4.1.4 Effect of partial coherence
93(2)
4.2 Effect of group-velocity dispersion
95(13)
4.2.1 Pulse evolution
96(2)
4.2.2 Broadening factor
98(2)
4.2.3 Optical wave breaking
100(3)
4.2.4 Experimental results
103(1)
4.2.5 Effect of third-order dispersion
104(1)
4.2.6 SPM effects in fiber amplifiers
105(3)
4.3 Semianalytic techniques
108(5)
4.3.1 Moment method
108(2)
4.3.2 Variational method
110(1)
4.3.3 Specific analytic solutions
111(2)
4.4 Higher-order nonlinear effects
113(14)
4.4.1 Self-steepening
114(3)
4.4.2 Effect of GVD on optical shocks
117(2)
4.4.3 Intrapulse Raman scattering
119(2)
Problems
121(2)
References
123(4)
5 Optical solitons
127(62)
5.1 Modulation instability
127(11)
5.1.1 Linear stability analysis
127(2)
5.1.2 Gain spectrum
129(2)
5.1.3 Experimental observation
131(1)
5.1.4 Ultrashort pulse generation
132(2)
5.1.5 Impact of loss and third-order dispersion
134(2)
5.1.6 Spatial modulation of fiber parameters
136(2)
5.2 Fiber solitons
138(12)
5.2.1 Inverse scattering method
139(2)
5.2.2 Fundamental soliton
141(2)
5.2.3 Second and higher-order solitons
143(3)
5.2.4 Experimental confirmation
146(1)
5.2.5 Soliton stability
147(3)
5.3 Other types of solitons
150(9)
5.3.1 Dark solitons
150(4)
5.3.2 Bistable solitons
154(1)
5.3.3 Dispersion-managed solitons
155(1)
5.3.4 Optical similaritons
156(3)
5.4 Perturbation of solitons
159(10)
5.4.1 Perturbation methods
159(1)
5.4.2 Fiber loss
160(2)
5.4.3 Soliton amplification
162(3)
5.4.4 Soliton interaction
165(4)
5.5 Higher-order effects
169(11)
5.5.1 Moment equations for pulse parameters
169(2)
5.5.2 Third-order dispersion
171(2)
5.5.3 Self-steepening
173(2)
5.5.4 Intrapulse Raman scattering
175(5)
5.6 Propagation of femtosecond pulses
180(9)
Problems
182(1)
References
183(6)
6 Polarization effects
189(56)
6.1 Nonlinear birefringence
189(5)
6.1.1 Origin of nonlinear birefringence
190(2)
6.1.2 Coupled-mode equations
192(1)
6.1.3 Elliptically birefringent fibers
193(1)
6.2 Nonlinear phase shift
194(8)
6.2.1 Nondispersive XPM
194(2)
6.2.2 Optical Kerr effect
196(4)
6.2.3 Pulse shaping
200(2)
6.3 Evolution of polarization state
202(8)
6.3.1 Analytic solution
202(2)
6.3.2 Poincare-sphere representation
204(3)
6.3.3 Polarization instability
207(3)
6.3.4 Polarization chaos
210(1)
6.4 Vector modulation instability
210(10)
6.4.1 Low-birefringence fibers
211(2)
6.4.2 High-birefringence fibers
213(2)
6.4.3 Isotropic fibers
215(2)
6.4.4 Experimental results
217(3)
6.5 Birefringence and solitons
220(8)
6.5.1 Low-birefringence fibers
220(1)
6.5.2 High-birefringence fibers
221(4)
6.5.3 Soliton-dragging logic gates
225(1)
6.5.4 Vector solitons
226(2)
6.6 Higher-order effects
228(8)
6.6.1 Extended coupled-mode equations
229(1)
6.6.2 Impact of TOD and Raman nonlinearity
230(3)
6.6.3 Interaction of two vector solitons
233(3)
6.7 Random birefringence
236(9)
6.7.1 Polarization-mode dispersion
236(1)
6.7.2 Vector form of the NLS equation
237(2)
6.7.3 Effects of PMD on solitons
239(2)
Problems
241(1)
References
241(4)
7 Cross-phase modulation
245(52)
7.1 XPM-induced nonlinear coupling
245(3)
7.1.1 Nonlinear refractive index
245(2)
7.1.2 Coupled NLS equations
247(1)
7.2 XPM-induced modulation instability
248(4)
7.2.1 Linear stability analysis
248(2)
7.2.2 Experimental results
250(2)
7.3 XPM-paired solitons
252(5)
7.3.1 Bright-dark soliton pair
252(1)
7.3.2 Bright-gray soliton pair
253(1)
7.3.3 Periodic solutions
254(2)
7.3.4 Multiple coupled NLS equations
256(1)
7.4 Spectral and temporal effects
257(10)
7.4.1 Asymmetric spectral broadening
258(5)
7.4.2 Asymmetric temporal changes
263(3)
7.4.3 Higher-order nonlinear effects
266(1)
7.5 Applications of XPM
267(5)
7.5.1 XPM-induced pulse compression
267(3)
7.5.2 XPM-induced optical switching
270(1)
7.5.3 XPM-induced wavelength conversion
271(1)
7.6 Polarization effects
272(10)
7.6.1 Vector theory of XPM
272(1)
7.6.2 Polarization evolution
273(3)
7.6.3 Polarization-dependent spectral broadening
276(2)
7.6.4 Pulse trapping and compression
278(3)
7.6.5 XPM-induced wave breaking
281(1)
7.7 XPM effects in birefringent fibers
282(6)
7.7.1 Fibers with low birefringence
283(4)
7.7.2 Fibers with high birefringence
287(1)
7.8 Two counterpropagating waves
288(9)
Problems
291(1)
References
292(5)
8 Stimulated Raman scattering
297(58)
8.1 Basic concepts
297(10)
8.1.1 Raman-gain spectrum
298(1)
8.1.2 Raman threshold
299(3)
8.1.3 Coupled amplitude equations
302(3)
8.1.4 Effect of four-wave mixing
305(2)
8.2 Quasi-continuous SRS
307(12)
8.2.1 Single-pass Raman generation
307(2)
8.2.2 Raman fiber lasers
309(3)
8.2.3 Raman fiber amplifiers
312(5)
8.2.4 Raman-induced crosstalk
317(2)
8.3 SRS with short pump pulses
319(15)
8.3.1 Pulse-propagation equations
319(1)
8.3.2 Nondispersive case
320(3)
8.3.3 Effects of GVD
323(3)
8.3.4 Raman-induced index changes
326(1)
8.3.5 Experimental results
327(4)
8.3.6 Synchronously pumped Raman lasers
331(1)
8.3.7 Short-pulse Raman amplification
332(2)
8.4 Soliton effects
334(8)
8.4.1 Raman solitons
334(4)
8.4.2 Raman soliton lasers
338(3)
8.4.3 Soliton-effect pulse compression
341(1)
8.5 Polarization effects
342(13)
8.5.1 Vector theory of Raman amplification
342(4)
8.5.2 PMD effects on Raman amplification
346(3)
Problems
349(1)
References
350(5)
9 Stimulated Brillouin scattering
355(46)
9.1 Basic concepts
355(5)
9.1.1 Physical process
355(1)
9.1.2 Brillouin-gain spectrum
356(4)
9.2 Quasi-CWSBS
360(8)
9.2.1 Brillouin threshold
360(1)
9.2.2 Polarization effects
361(2)
9.2.3 Techniques for controlling the SBS threshold
363(2)
9.2.4 Experimental results
365(3)
9.3 Brillouin fiber amplifiers
368(4)
9.3.1 Gain saturation
368(2)
9.3.2 Amplifier design and applications
370(2)
9.4 SBS dynamics
372(15)
9.4.1 Coupled amplitude equations
372(2)
9.4.2 SBS with Q-switched pulses
374(4)
9.4.3 SBS-induced index changes
378(5)
9.4.4 Relaxation oscillations
383(2)
9.4.5 Modulation instability and chaos
385(2)
9.5 Brillouin fiber lasers
387(14)
9.5.1 CW operation
387(4)
9.5.2 Pulsed operation
391(3)
Problems
394(1)
References
395(6)
10 Four-wave mixing
401(62)
10.1 Origin of four-wave mixing
401(2)
10.2 Theory of four-wave mixing
403(6)
10.2.1 Coupled amplitude equations
404(1)
10.2.2 Approximate solution
405(1)
10.2.3 Effect of phase matching
406(2)
10.2.4 Ultrafast four-wave mixing
408(1)
10.3 Phase-matching techniques
409(10)
10.3.1 Physical mechanisms
410(1)
10.3.2 Nearly phase-matched four-wave mixing
411(1)
10.3.3 Phase matching near the zero-dispersion wavelength
412(1)
10.3.4 Phase matching through self-phase modulation
413(3)
10.3.5 Phase matching in birefringent fibers
416(3)
10.4 Parametric amplification
419(15)
10.4.1 Review of early work
419(2)
10.4.2 Gain spectrum and its bandwidth
421(2)
10.4.3 Single-pump configuration
423(4)
10.4.4 Dual-pump configuration
427(5)
10.4.5 Effects of pump depletion
432(2)
10.5 Polarization effects
434(12)
10.5.1 Vectortheory of four-wave mixing
435(2)
10.5.2 Polarization dependence of parametric gain
437(3)
10.5.3 Linearly and circularly polarized pumps"
440(3)
10.5.4 Effect of residual fiber birefringence
443(3)
10.6 Applications of four-wave mixing
446(17)
10.6.1 Parametric amplifiers and wavelength converters
446(2)
10.6.2 Tunable fiber-optic parametric oscillators
448(3)
10.6.3 Ultrafast signal processing
451(2)
10.6.4 Quantum correlation and noise squeezing
453(3)
10.6.5 Phase-sensitive amplification
456(1)
Problems
457(1)
References
458(5)
11 Highly nonlinear fibers
463(40)
11.1 Nonlinear parameter
463(11)
11.1.1 Units and values of n2
463(2)
11.1.2 SPM-based techniques
465(3)
11.1.3 XPM-based technique
468(1)
11.1.4 FWM-based technique
469(2)
11.1.5 Variations in n2 values
471(3)
11.2 Fibers with silica cladding
474(2)
11.3 Tapered fibers with air cladding
476(4)
11.4 Microstructured fibers
480(7)
11.4.1 Design and fabrication
480(2)
11.4.2 Modal and dispersive properties
482(3)
11.4.3 Hollow-core photonic crystal fibers
485(1)
11.4.4 Bragg fibers
486(1)
11.5 Non-silica fibers
487(6)
11.5.1 Lead-silicate fibers
488(3)
11.5.2 Chalcogenide fibers
491(1)
11.5.3 Bismuth-oxide fibers
492(1)
11.6 Theory of narrow-core fibers
493(10)
Problems
498(1)
References
499(4)
12 Novel nonlinear phenomena
503(54)
12.1 Soliton fission and dispersive waves
503(9)
12.1.1 Fission of second-and higher-order solitons
503(4)
12.1.2 Generation of dispersive waves
507(5)
12.2 Intrapulse Raman scattering
512(20)
12.2.1 Enhanced RIFS through soliton fission
512(4)
12.2.2 Cross-correlation technique
516(2)
12.2.3 Wavelength tuning through RIFS
518(3)
12.2.4 Effects of birefringence
521(2)
12.2.5 Suppression of Raman-induced frequency shifts
523(4)
12.2.6 Soliton dynamics near a zero-dispersion wavelength
527(3)
12.2.7 Multipeak Raman solitons
530(2)
12.3 Frequency combs and cavity solitons
532(6)
12.3.1 CW-pumped ring cavities
533(1)
12.3.2 Nonlinear dynamics of ring cavities
534(3)
12.3.3 Frequency combs without a cavity
537(1)
12.4 Second-harmonic generation
538(8)
12.4.1 Physical mechanisms
539(2)
12.4.2 Thermal poling and quasi-phase matching
541(3)
12.4.3 SHG theory
544(2)
12.5 Third-harmonic generation
546(11)
12.5.1 THG in highly nonlinear fibers
546(1)
12.5.2 Effects of group-velocity mismatch
547(2)
12.5.3 Effects of fiber birefringence
549(2)
Problems
551(1)
References
552(5)
13 Supercontinuum generation
557(64)
13.1 Pumping with picosecond pulses
557(6)
13.1.1 Nonlinear mechanisms
558(2)
13.1.2 Experimental progress after 2000
560(3)
13.2 Pumping with femtosecond pulses
563(5)
13.3 Temporal and spectral evolution of pulses
568(13)
13.3.1 Numerical modeling of supercontinuum
569(3)
13.3.2 Role of cross-phase modulation
572(3)
13.3.3 XPM-induced trapping
575(5)
13.3.4 Role of four-wave mixing
580(1)
13.4 CW or quasi-CW pumping
581(7)
13.4.1 Nonlinear mechanisms
582(3)
13.4.2 Experimental results
585(3)
13.5 Polarization effects
588(5)
13.6 Coherence properties
593(8)
13.6.1 Effect of pump coherence
593(3)
13.6.2 Spectral incoherent solitons
596(3)
13.6.3 Techniques for improving spectral coherence
599(2)
13.7 Ultraviolet and mid-infrared supercontinua
601(6)
13.7.1 Extension into ultraviolet region
602(2)
13.7.2 Extension into mid-infrared region
604(3)
13.8 Optical rogue waves
607(14)
13.8.1 L-shaped statistics of pulse-to-pulse fluctuations
607(1)
13.8.2 Techniques for controlling rogue-wave statistics
608(3)
13.8.3 Modulation instability revisited
611(3)
Problems
614(1)
References
615(6)
14 Multimode fibers
621(64)
14.1 Modes of optical fibers
621(10)
14.1.1 Step-index fibers
621(4)
14.1.2 Graded-index fibers
625(2)
14.1.3 Multicore fibers
627(3)
14.1.4 Excitation of fiber modes
630(1)
14.2 Nonlinear pulse propagation
631(9)
14.2.1 Multimode propagation equations
631(2)
14.2.2 Few-mode fibers
633(2)
14.2.3 Random linear mode coupling
635(3)
14.2.4 Graded-index fibers
638(2)
14.3 Modulation instability and solitons
640(11)
14.3.1 Modulation instability
641(3)
14.3.2 Multimode solitons
644(5)
14.3.3 Solitons in specific fiber modes
649(2)
14.4 Intermodal nonlinear phenomena
651(14)
14.4.1 Intermodal FWM
651(6)
14.4.2 Intermodal SRS
657(5)
14.4.3 Intermodal SBS
662(3)
14.5 Spatio-temporal dynamics
665(9)
14.5.1 Spatial beam cleanup
666(2)
14.5.2 Supercontinuum generation
668(6)
14.6 Multicore fibers
674(11)
Problems
678(1)
References
679(6)
A System of units
685(2)
B Nonlinear response of fibers
687(2)
References
688(1)
C Derivation of the generalized NLS equation
689(4)
D Numerical code for the NLS equation
693(2)
E List of acronyms
695(2)
Index 697
Govind P. Agrawal received his B.Sc. degree from the University of Lucknow in 1969 with honours. He was awarded a gold medal for achieving the top position in the university. Govind joined the Indian Institute of Technology at New Delhi in 1969 and received the M.Sc. and Ph.D. degrees in 1971 and 1974, respectively. After holding positions at the Ecole Polytechnique (France), the City University of New York, and the Laser company, Quantel, Orsay, France, Dr. Agrawal joined in 1981 the technical staff of the world-famous AT&T Bell Laboratories, Murray Hill, N.J., USA, where he worked on problems related to the development of semiconductor lasers and fiber-optic communication systems. He joined in 1989 the faculty of the Institute of Optics at the University of Rochester where he is a Professor of Optics. His research interests focus on quantum electronics, nonlinear optics, and optical communications. In particular, he has contributed significantly to the fields of semiconductor lasers, nonlinear fiber optics, and optical communications. He is an author or co-author of more than 250 research papers, several book chapters and review articles, and four books. He has also edited the books "Contemporary Nonlinear Optics" (Academic Press, 1992) and "Semiconductor Lasers: Past, Present and Future" (AIP Press, 1995). The books authored by Dr. Agrawal have influenced an entire generation of scientists. Several of them have been translated into Chinese, Japanese, Greek, and Russian.