Preface |
|
vii | |
|
I Nonlinear Least Squares |
|
|
1 | (270) |
|
Nonlinear Inverse Problems: Examples and Difficulties |
|
|
5 | (24) |
|
Example 1: Inversion of Knott-Zoeppritz Equations |
|
|
6 | (3) |
|
An Abstract NLS Inverse Problem |
|
|
9 | (1) |
|
|
10 | (11) |
|
|
10 | (2) |
|
|
12 | (1) |
|
Output Least Squares Identifiability and Quadratically Wellposed Problems |
|
|
12 | (2) |
|
|
14 | (6) |
|
|
20 | (1) |
|
Example 2: ID Elliptic Parameter Estimation Problem |
|
|
21 | (3) |
|
Example 3: 2D Elliptic Nonlinear Source Estimation Problem |
|
|
24 | (2) |
|
Example 4: 2D Elliptic Parameter Estimation Problem |
|
|
26 | (3) |
|
|
29 | (50) |
|
|
30 | (3) |
|
The Sensitivity Functions Approach |
|
|
33 | (1) |
|
|
33 | (5) |
|
Implementation of the Adjoint Approach |
|
|
38 | (3) |
|
Example 1: The Adjoint Knott-Zoeppritz Equations |
|
|
41 | (5) |
|
Examples 3 and 4: Discrete Adjoint Equations |
|
|
46 | (13) |
|
Discretization Step 1: Choice of a Discretized Forward Map |
|
|
47 | (5) |
|
Discretization Step 2: Choice of a Discretized Objective Function |
|
|
52 | (1) |
|
Derivation Step 0: Forward Map and Objective Function |
|
|
52 | (1) |
|
Derivation Step 1: State-Space Decomposition |
|
|
53 | (1) |
|
Derivation Step 2: Lagrangian |
|
|
54 | (2) |
|
Derivation Step 3: Adjoint Equation |
|
|
56 | (2) |
|
Derivation Step 4: Gradient Equation |
|
|
58 | (1) |
|
Examples 3 and 4: Continuous Adjoint Equations |
|
|
59 | (6) |
|
Example 5: Differential Equations, Discretized Versus Discrete Gradient |
|
|
65 | (8) |
|
Implementing the Discretized Gradient |
|
|
68 | (1) |
|
Implementing the Discrete Gradient |
|
|
68 | (5) |
|
Example 6: Discrete Marching Problems |
|
|
73 | (6) |
|
Choosing a Parameterization |
|
|
79 | (82) |
|
|
80 | (4) |
|
|
80 | (3) |
|
|
83 | (1) |
|
|
84 | (1) |
|
How Many Parameters Can be Retrieved from the Data? |
|
|
84 | (4) |
|
Simulation Versus Optimization Parameters |
|
|
88 | (2) |
|
Parameterization by a Closed Form Formula |
|
|
90 | (1) |
|
Decomposition on the Singular Basis |
|
|
91 | (2) |
|
Multiscale Parameterization |
|
|
93 | (15) |
|
Simulation Parameters for a Distributed Parameter |
|
|
93 | (1) |
|
Optimization Parameters at Scale k |
|
|
94 | (1) |
|
Scale-By-Scale Optimization |
|
|
95 | (10) |
|
Examples of Multiscale Bases |
|
|
105 | (3) |
|
Summary for Multiscale Parameterization |
|
|
108 | (1) |
|
Adaptive Parameterization: Refinement Indicators |
|
|
108 | (18) |
|
Definition of Refinement Indicators |
|
|
109 | (7) |
|
Multiscale Refinement Indicators |
|
|
116 | (5) |
|
Application to Image Segmentation |
|
|
121 | (1) |
|
|
122 | (2) |
|
A Refinement/Coarsening Indicators Algorithm |
|
|
124 | (2) |
|
Implementation of the Inversion |
|
|
126 | (9) |
|
Constraints and Optimization Parameters |
|
|
126 | (3) |
|
Gradient with Respect to Optimization Parameters |
|
|
129 | (6) |
|
Maximum Projected Curvature: A Descent Step for Nonlinear Least Squares |
|
|
135 | (26) |
|
|
135 | (2) |
|
Maximum Projected Curvature (MPC) Step |
|
|
137 | (6) |
|
Convergence Properties for the Theoretical MPC Step |
|
|
143 | (1) |
|
Implementation of the MPC Step |
|
|
144 | (4) |
|
Performance of the MPC Step |
|
|
148 | (13) |
|
Output Least Squares Identifiability and Quadratically Wellposed NLS Problems |
|
|
161 | (48) |
|
|
163 | (2) |
|
Finite Curvature/Limited Deflection Problems |
|
|
165 | (9) |
|
Identifiability and Stability of the Linearized Problems |
|
|
174 | (2) |
|
A Sufficient Condition for OLS-Identifiability |
|
|
176 | (3) |
|
The Case of Finite Dimensional Parameters |
|
|
179 | (3) |
|
Four Questions to Q-Wellposedness |
|
|
182 | (2) |
|
Case of Finite Dimensional Parameters |
|
|
183 | (1) |
|
Case of Infinite Dimensional Parameters |
|
|
184 | (1) |
|
Answering the Four Questions |
|
|
184 | (7) |
|
Application to Example 2: ID Parameter Estimation with H1 Observation |
|
|
191 | (9) |
|
|
193 | (5) |
|
|
198 | (1) |
|
|
199 | (1) |
|
Conclusion: OLS-Identifiability |
|
|
200 | (1) |
|
Application to Example 4: 2D Parameter Estimation, with H1 Observation |
|
|
200 | (9) |
|
Regularization of Nonlinear Least Squares Problems |
|
|
209 | (62) |
|
Levenberg-Marquardt-Tychonov (LMT) Regularization |
|
|
209 | (28) |
|
|
211 | (8) |
|
Finite Curvature/Limited Deflection (FC/LD) Problems |
|
|
219 | (12) |
|
General Nonlinear Problems |
|
|
231 | (6) |
|
Application to the Nonlinear 2D Source Problem |
|
|
237 | (9) |
|
State-Space Regularization |
|
|
246 | (13) |
|
Dense Observation: Geometric Approach |
|
|
248 | (8) |
|
Incomplete Observation: Soft Analysis |
|
|
256 | (3) |
|
Adapted Regularization for Example 4: 2D Parameter Estimation with H1 Observation |
|
|
259 | (12) |
|
Which Part of a is Constrained by the Data? |
|
|
260 | (2) |
|
How to Control the Unconstrained Part? |
|
|
262 | (2) |
|
The Adapted-Regularized Problem |
|
|
264 | (1) |
|
Infinite Dimensional Linear Stability and Deflection Estimates |
|
|
265 | (2) |
|
Finite Curvature Estimate |
|
|
267 | (1) |
|
OLS-Identifiability for the Adapted Regularized Problem |
|
|
268 | (3) |
|
II A Generalization of Convex Sets |
|
|
271 | (74) |
|
|
275 | (24) |
|
Equipping the Set D with Paths |
|
|
277 | (4) |
|
Definition and Main Properties of q.c. Sets |
|
|
281 | (18) |
|
Strictly Quasi-Convex Sets |
|
|
299 | (22) |
|
Definition and Main Properties of s.q.c. Sets |
|
|
300 | (4) |
|
Characterization by the Global Radius of Curvature |
|
|
304 | (12) |
|
Formula for the Global Radius of Curvature |
|
|
316 | (5) |
|
Deflection Conditions for the Strict Quasi-convexity of Sets |
|
|
321 | (24) |
|
|
327 | (10) |
|
The Case of an Attainable Set D = &phis; (C) |
|
|
337 | (8) |
Bibliography |
|
345 | (8) |
Index |
|
353 | |