Muutke küpsiste eelistusi

Nonlinear Predictive Control Using Wiener Models: Computationally Efficient Approaches for Polynomial and Neural Structures 2022 ed. [Kõva köide]

  • Formaat: Hardback, 343 pages, kõrgus x laius: 235x155 mm, kaal: 717 g, 121 Illustrations, color; 46 Illustrations, black and white; XXIII, 343 p. 167 illus., 121 illus. in color., 1 Hardback
  • Sari: Studies in Systems, Decision and Control 389
  • Ilmumisaeg: 22-Sep-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030838145
  • ISBN-13: 9783030838140
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 343 pages, kõrgus x laius: 235x155 mm, kaal: 717 g, 121 Illustrations, color; 46 Illustrations, black and white; XXIII, 343 p. 167 illus., 121 illus. in color., 1 Hardback
  • Sari: Studies in Systems, Decision and Control 389
  • Ilmumisaeg: 22-Sep-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030838145
  • ISBN-13: 9783030838140
This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant.

A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages of neural Wiener models are demonstrated.

Arvustused

The present book provides computationally efficient MPC (model predictive control) solutions as an alternative for the classical one, which has a limited structure, giving poor control quality in the case of an imperfect model and disturbances. The book is of real interest for all researchers working in control theory, optimization, engineering and economics. (Savin Treanta, zbMATH 1510.93001, 2023)

Introduction to Model Predictive Control.- MPC Algorithms Using
Input-Output Wiener Models.- MPC Algorithms Using State-Space Wiener Models.-
Conclusions.- Index.