Preface |
|
xvii | |
|
I Nonparametric Kernel Methods |
|
|
1 | (218) |
|
|
3 | (54) |
|
Univariate Density Estimation |
|
|
4 | (10) |
|
Univariate Bandwidth Selection: Rule-of-Thumb and Plug-In Methods |
|
|
14 | (1) |
|
Univariate Bandwidth Selection: Cross-Validation Methods |
|
|
15 | (4) |
|
Least Squares Cross-Validation |
|
|
15 | (3) |
|
Likelihood Cross-Validation |
|
|
18 | (1) |
|
An Illustration of Data-Driven Bandwidth Selection |
|
|
19 | (1) |
|
Univariate CDF Estimation |
|
|
19 | (4) |
|
Univariate CDF Bandwidth Selection: Cross-Validation Methods |
|
|
23 | (1) |
|
Multivariate Density Estimation |
|
|
24 | (2) |
|
Multivariate Bandwidth Selection: Rule-of-Thumb and Plug-In Methods |
|
|
26 | (1) |
|
Multivariate Bandwidth Selection: Cross-Validation Methods |
|
|
27 | (1) |
|
Least Squares Cross-Validation |
|
|
27 | (1) |
|
Likelihood Cross-Validation |
|
|
28 | (1) |
|
Asymptotic Normality of Density Estimators |
|
|
28 | (2) |
|
Uniform Rates of Convergence |
|
|
30 | (3) |
|
Higher Order Kernel Functions |
|
|
33 | (2) |
|
Proof of Theorem 1.4 (Uniform Almost Sure Convergence) |
|
|
35 | (5) |
|
|
40 | (7) |
|
|
41 | (2) |
|
Unemployment Rates and City Size |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
Evolution of Real Income Distribution in Italy, 1951--1998 |
|
|
45 | (2) |
|
|
47 | (10) |
|
|
57 | (58) |
|
Local Constant Kernel Estimation |
|
|
60 | (6) |
|
Intuition Underlying the Local Constant Kernel Estimator |
|
|
64 | (2) |
|
Local Constant Bandwidth Selection |
|
|
66 | (12) |
|
Rule-of-Thumb and Plug-In Methods |
|
|
66 | (3) |
|
Least Squares Cross-Validation |
|
|
69 | (3) |
|
|
72 | (1) |
|
The Presence of Irrelevant Regressors |
|
|
73 | (5) |
|
Some Further Results on Cross-Validation |
|
|
78 | (1) |
|
Uniform Rates of Convergence |
|
|
78 | (1) |
|
Local Linear Kernel Estimation |
|
|
79 | (6) |
|
Local Linear Bandwidth Selection: Least Squares Cross-Validation |
|
|
83 | (2) |
|
Local Polynomial Regression (General pth Order) |
|
|
85 | (7) |
|
|
85 | (3) |
|
|
88 | (1) |
|
Asymptotic Normality of Local Polynomial Estimators |
|
|
89 | (3) |
|
|
92 | (5) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Inflation Forecasting and Money Growth |
|
|
93 | (4) |
|
|
97 | (11) |
|
|
98 | (2) |
|
|
100 | (6) |
|
Definitions of Al,p+1 and Vl Used in Theorem 2.10 |
|
|
106 | (2) |
|
|
108 | (7) |
|
Frequency Estimation with Mixed Data |
|
|
115 | (10) |
|
Probability Function Estimation with Discrete Data |
|
|
116 | (2) |
|
Regression with Discrete Regressors |
|
|
118 | (1) |
|
Estimation with Mixed Data: The Frequency Approach |
|
|
118 | (2) |
|
Density Estimation with Mixed Data |
|
|
118 | (1) |
|
Regression with Mixed Data |
|
|
119 | (1) |
|
Some Cautionary Remarks on Frequency Methods |
|
|
120 | (2) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (2) |
|
Kernel Estimation with Mixed Data |
|
|
125 | (30) |
|
Smooth Estimation of Joint Distributions with Discrete Data |
|
|
126 | (5) |
|
Smooth Regression with Discrete Data |
|
|
131 | (3) |
|
Kernel Regression with Discrete Regressors: The Irrelevant Regressor Case |
|
|
134 | (2) |
|
Regression with Mixed Data: Relevant Regressors |
|
|
136 | (4) |
|
Smooth Estimation with Mixed Data |
|
|
136 | (2) |
|
The Cross-Validation Method |
|
|
138 | (2) |
|
Regression with Mixed Data: Irrelevant Regressors |
|
|
140 | (5) |
|
Ordered Discrete Variables |
|
|
144 | (1) |
|
|
145 | (5) |
|
Food-Away-from-Home Expenditure |
|
|
145 | (2) |
|
|
147 | (3) |
|
|
150 | (5) |
|
Conditional Density Estimation |
|
|
155 | (26) |
|
Conditional Density Estimation: Relevant Variables |
|
|
155 | (2) |
|
Conditional Density Bandwidth Selection |
|
|
157 | (5) |
|
Least Squares Cross-Validation: Relevant Variables |
|
|
157 | (3) |
|
Maximum Likelihood Cross-Validation: Relevant Variables |
|
|
160 | (2) |
|
Conditional Density Estimation: Irrelevant Variables |
|
|
162 | (2) |
|
The Multivariate Dependent Variables Case |
|
|
164 | (7) |
|
The General Categorical Data Case |
|
|
167 | (1) |
|
|
168 | (3) |
|
|
171 | (9) |
|
A Nonparametric Analysis of Corruption |
|
|
171 | (1) |
|
Extramarital Affairs Data |
|
|
172 | (3) |
|
Married Female Labor Force Participation |
|
|
175 | (2) |
|
|
177 | (1) |
|
Multivariate Y Conditional Density Example: GDP Growth and Population Growth Conditional on OECD Status |
|
|
178 | (2) |
|
|
180 | (1) |
|
Conditional CDF and Quantile Estimation |
|
|
181 | (38) |
|
Estimating a Conditional CDF with Continuous Covariates without Smoothing the Dependent Variable |
|
|
182 | (2) |
|
Estimating a Conditional CDF with Continuous Covariates Smoothing the Dependent Variable |
|
|
184 | (5) |
|
Nonparametric Estimation of Conditional Quantile Functions |
|
|
189 | (2) |
|
The Check Function Approach |
|
|
191 | (2) |
|
Conditional CDF and Quantile Estimation with Mixed Discrete and Continuous Covariates |
|
|
193 | (3) |
|
A Small Monte Carlo Simulation Study |
|
|
196 | (2) |
|
Nonparametric Estimation of Hazard Functions |
|
|
198 | (2) |
|
|
200 | (9) |
|
|
200 | (2) |
|
|
202 | (1) |
|
Conditional Value at Risk |
|
|
202 | (4) |
|
Real Income in Italy, 1951--1998 |
|
|
206 | (1) |
|
Multivariate Y Conditional CDF Example: GDP Growth and Population Growth Conditional on OECD Status |
|
|
206 | (3) |
|
|
209 | (6) |
|
Proofs of Theorems 6.1, 6.2, and 6.4 |
|
|
209 | (5) |
|
Proofs of Theorems 6.5 and 6.6 (Mixed Covariates Case) |
|
|
214 | (1) |
|
|
215 | (4) |
|
II Semiparametric Methods |
|
|
219 | (130) |
|
Semiparametric Partially Linear Models |
|
|
221 | (28) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
222 | (8) |
|
Estimation of the Nonparametric Component |
|
|
228 | (2) |
|
|
230 | (3) |
|
Semiparametric Efficiency Bounds |
|
|
233 | (5) |
|
The Conditionally Homoskedastic Error Case |
|
|
233 | (2) |
|
The Conditionally Heteroskedastic Error Case |
|
|
235 | (3) |
|
|
238 | (8) |
|
|
238 | (6) |
|
Verifying Theorem 7.3 for a Partially Linear Model |
|
|
244 | (2) |
|
|
246 | (3) |
|
Semiparametric Single Index Models |
|
|
249 | (34) |
|
Identification Conditions |
|
|
251 | (2) |
|
|
253 | (5) |
|
|
253 | (5) |
|
Direct Semiparametric Estimators for β |
|
|
258 | (5) |
|
Average Derivative Estimators |
|
|
258 | (4) |
|
|
262 | (1) |
|
|
263 | (3) |
|
Bandwidth Selection for Ichimura's Method |
|
|
263 | (2) |
|
Bandwidth Selection with Direct Estimation Methods |
|
|
265 | (1) |
|
Klein and Spady's Estimator |
|
|
266 | (1) |
|
|
267 | (2) |
|
Manski's Maximum Score Estimator |
|
|
269 | (1) |
|
Horowitz's Smoothed Maximum Score Estimator |
|
|
270 | (1) |
|
Han's Maximum Rank Estimator |
|
|
270 | (1) |
|
Multinomial Discrete Choice Models |
|
|
271 | (1) |
|
Ai's Semiparametric Maximum Likelihood Approach |
|
|
272 | (3) |
|
A Sketch of the Proof of Theorem 8.1 |
|
|
275 | (2) |
|
|
277 | (4) |
|
Modeling Response to Direct Marketing Catalog Mailings |
|
|
277 | (4) |
|
|
281 | (2) |
|
Additive and Smooth (Varying) Coefficient Semiparametric Models |
|
|
283 | (32) |
|
|
283 | (14) |
|
The Marginal Integration Method |
|
|
284 | (2) |
|
A Computationally Efficient Oracle Estimator |
|
|
286 | (3) |
|
The Ordinary Backfitting Method |
|
|
289 | (1) |
|
The Smoothed Backfitting Method |
|
|
290 | (5) |
|
Additive Models with Link Functions |
|
|
295 | (2) |
|
An Additive Partially Linear Model |
|
|
297 | (4) |
|
|
299 | (2) |
|
A Semiparametric Varying (Smooth) Coefficient Model |
|
|
301 | (11) |
|
A Local Constant Estimator of the Smooth Coefficient Function |
|
|
302 | (1) |
|
A Local Linear Estimator of the Smooth Coefficient Function |
|
|
303 | (3) |
|
Testing for a Parametric Smooth Coefficient Model |
|
|
306 | (2) |
|
Partially Linear Smooth Coefficient Models |
|
|
308 | (2) |
|
|
310 | (2) |
|
|
312 | (3) |
|
|
315 | (16) |
|
Semiparametric Type-2 Tobit Models |
|
|
316 | (1) |
|
Estimation of a Semiparametric Type-2 Tobit Model |
|
|
317 | (3) |
|
Gallant and Nychka's Estimator |
|
|
318 | (1) |
|
Estimation of the Intercept in Selection Models |
|
|
319 | (1) |
|
Semiparametric Type-3 Tobit Models |
|
|
320 | (8) |
|
Econometric Preliminaries |
|
|
320 | (3) |
|
Alternative Estimation Methods |
|
|
323 | (5) |
|
Das, Newey and Vella's Nonparametric Selection Model |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
331 | (18) |
|
Parametric Censored Models |
|
|
332 | (2) |
|
Semiparametric Censored Regression Models |
|
|
334 | (2) |
|
Semiparametric Censored Regression Models with Nonparametric Heteroskedasticity |
|
|
336 | (2) |
|
The Univariate Kaplan-Meier CDF Estimator |
|
|
338 | (3) |
|
The Multivariate Kaplan-Meier CDF Estimator |
|
|
341 | (4) |
|
Nonparametric Regression Models with Random Censoring |
|
|
343 | (2) |
|
Nonparametric Censored Regression |
|
|
345 | (3) |
|
Lewbel and Linton's Approach |
|
|
345 | (1) |
|
Chen, Dahl and Khan's Approach |
|
|
346 | (2) |
|
|
348 | (1) |
|
III Consistent Model Specification Tests |
|
|
349 | (64) |
|
Model Specification Tests |
|
|
351 | (46) |
|
A Simple Consistent Test for Parametric Regression Functional Form |
|
|
354 | (8) |
|
A Consistent Test for Correct Parametric Functional Form |
|
|
355 | (5) |
|
|
360 | (2) |
|
Testing for Equality of PDFs |
|
|
362 | (3) |
|
More Tests Related to Regression Functions |
|
|
365 | (13) |
|
Hardle and Mammen's Test for a Parametric Regression Model |
|
|
365 | (2) |
|
An Adaptive and Rate Optimal Test |
|
|
367 | (2) |
|
A Test for a Parametric Single Index Model |
|
|
369 | (1) |
|
A Nonparametric Omitted Variables Test |
|
|
370 | (5) |
|
Testing the Significance of Categorical Variables |
|
|
375 | (3) |
|
|
378 | (7) |
|
Testing Independence between Two Random Variables |
|
|
378 | (2) |
|
A Test for a Parametric PDF |
|
|
380 | (2) |
|
A Kernel Test for Conditional Parametric Distributions |
|
|
382 | (3) |
|
|
385 | (3) |
|
|
385 | (3) |
|
|
388 | (6) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (2) |
|
|
391 | (3) |
|
|
394 | (3) |
|
|
397 | (16) |
|
Testing for Parametric Regression Functional Form |
|
|
398 | (3) |
|
Testing for Equality of PDFs |
|
|
401 | (1) |
|
A Nonparametric Significance Test |
|
|
401 | (1) |
|
Andrews's Test for Conditional CDFs |
|
|
402 | (2) |
|
Hong's Tests for Serial Dependence |
|
|
404 | (4) |
|
More on Nonsmoothing Tests |
|
|
408 | (1) |
|
|
409 | (1) |
|
|
409 | (1) |
|
|
410 | (3) |
|
IV Nonparametric Nearest Neighbor and Series Methods |
|
|
413 | (90) |
|
K-Nearest Neighbor Methods |
|
|
415 | (30) |
|
Density Estimation: The Univariate Case |
|
|
415 | (4) |
|
Regression Function Estimation |
|
|
419 | (2) |
|
A Local Linear k-nn Estimator |
|
|
421 | (1) |
|
Cross-Validation with Local Constant k-nn Estimation |
|
|
422 | (3) |
|
Cross-Validation with Local Linear k-nn Estimation |
|
|
425 | (2) |
|
Estimation of Semiparametric Models with k-nn Methods |
|
|
427 | (1) |
|
Model Specification Tests with K-nn Methods |
|
|
428 | (4) |
|
|
431 | (1) |
|
Using Different k for Different Components of x |
|
|
432 | (1) |
|
|
432 | (12) |
|
|
435 | (1) |
|
|
435 | (5) |
|
|
440 | (4) |
|
|
444 | (1) |
|
Nonparametric Series Methods |
|
|
445 | (58) |
|
Estimating Regression Functions |
|
|
446 | (5) |
|
|
449 | (2) |
|
Selection of the Series Term K |
|
|
451 | (3) |
|
|
453 | (1) |
|
|
454 | (12) |
|
An Additive Partially Linear Model |
|
|
455 | (6) |
|
Selection of Nonlinear Additive Components |
|
|
461 | (2) |
|
Estimating an Additive Model with a Known Link Function |
|
|
463 | (3) |
|
Estimation of Partially Linear Varying Coefficient Models |
|
|
466 | (13) |
|
Testing for Correct Parametric Regression Functional Form |
|
|
471 | (3) |
|
A Consistent Test for an Additive Partially Linear Model |
|
|
474 | (5) |
|
|
479 | (1) |
|
|
480 | (22) |
|
|
480 | (4) |
|
|
484 | (4) |
|
|
488 | (4) |
|
|
492 | (5) |
|
|
497 | (5) |
|
|
502 | (1) |
|
V Time Series, Simultaneous Equation, and Panel Data Models |
|
|
503 | (160) |
|
Instrumental Variables and Efficient Estimation of Semiparametric Models |
|
|
505 | (16) |
|
A Partially Linear Model with Endogenous Regressors in the Parametric Part |
|
|
505 | (4) |
|
A Varying Coefficient Model with Endogenous Regressors in the Parametric Part |
|
|
509 | (2) |
|
Ai and Chen's Efficient Estimator with Conditional Moment Restrictions |
|
|
511 | (6) |
|
|
511 | (2) |
|
Asymptotic Normality for Ø |
|
|
513 | (2) |
|
A Partially Linear Model with the Endogenous Regressors in the Nonparametric Part |
|
|
515 | (2) |
|
Proof of Equation (16.16) |
|
|
517 | (3) |
|
|
520 | (1) |
|
Endogeneity in Nonparametric Regression Models |
|
|
521 | (14) |
|
|
521 | (1) |
|
A Triangular Simultaneous Equation Model |
|
|
522 | (5) |
|
Newey-Powell Series-Based Estimator |
|
|
527 | (2) |
|
Hall and Horowitz's Kernel-Based Estimator |
|
|
529 | (3) |
|
Darolles, Florens and Renault's Estimator |
|
|
532 | (1) |
|
|
533 | (2) |
|
|
535 | (40) |
|
Density Estimation with Dependent Data |
|
|
537 | (4) |
|
Uniform Almost Sure Rate of Convergence |
|
|
541 | (1) |
|
Regression Models with Dependent Data |
|
|
541 | (10) |
|
The Martingale Difference Error Case |
|
|
541 | (3) |
|
The Autocorrelated Error Case |
|
|
544 | (2) |
|
One-Step-Ahead Forecasting |
|
|
546 | (1) |
|
|
547 | (1) |
|
Estimation of Nonparametric Impulse Response Functions |
|
|
548 | (3) |
|
Semiparametric Models with Dependent Data |
|
|
551 | (3) |
|
A Partially Linear Model with Dependent Data |
|
|
551 | (1) |
|
Additive Regression Models |
|
|
552 | (1) |
|
Varying Coefficient Models with Dependent Data |
|
|
553 | (1) |
|
Testing for Serial Correlation in Semiparametric Models |
|
|
554 | (2) |
|
The Test Statistic and Its Asymptotic Distribution |
|
|
554 | (1) |
|
Testing Zero First Order Serial Correlation |
|
|
555 | (1) |
|
Model Specification Tests with Dependent Data |
|
|
556 | (2) |
|
A Kernel Test for Correct Parametric Regression Functional Form |
|
|
556 | (1) |
|
Nonparametric Significance Tests |
|
|
557 | (1) |
|
Nonsmoothing Tests for Regression Functional Form |
|
|
558 | (1) |
|
Testing Parametric Predictive Models |
|
|
559 | (5) |
|
In-Sample Testing of Conditional CDFs |
|
|
559 | (3) |
|
Out-of-Sample Testing of Conditional CDFs |
|
|
562 | (2) |
|
|
564 | (2) |
|
Forecasting Short-Term Interest Rates |
|
|
564 | (2) |
|
Nonparametric Estimation with Nonstationary Data |
|
|
566 | (1) |
|
|
567 | (5) |
|
|
567 | (2) |
|
|
569 | (3) |
|
|
572 | (3) |
|
|
575 | (52) |
|
Nonparametric Estimation of Panel Data Models: Ignoring the Variance Structure |
|
|
576 | (2) |
|
Wang's Efficient Nonparametric Panel Data Estimator |
|
|
578 | (6) |
|
A Partially Linear Model with Random Effects |
|
|
584 | (2) |
|
Nonparametric Panel Data Models with Fixed Effects |
|
|
586 | (6) |
|
Error Variance Structure Is Known |
|
|
587 | (3) |
|
The Error Variance Structure Is Unknown |
|
|
590 | (2) |
|
A Partially Linear Model with Fixed Effects |
|
|
592 | (2) |
|
Semiparametric Instrumental Variable Estimators |
|
|
594 | (5) |
|
|
594 | (1) |
|
The Choice of Instruments |
|
|
595 | (2) |
|
|
597 | (2) |
|
Testing for Serial Correlation and for Individual Effects in Semiparametric Models |
|
|
599 | (3) |
|
Series Estimation of Panel Data Models |
|
|
602 | (4) |
|
|
602 | (2) |
|
Alternative Formulation of Fixed Effects |
|
|
604 | (2) |
|
Nonlinear Panel Data Models |
|
|
606 | (12) |
|
Censored Panel Data Models |
|
|
607 | (7) |
|
Discrete Choice Panel Data Models |
|
|
614 | (4) |
|
|
618 | (6) |
|
|
618 | (3) |
|
Leading MSE Calculation of Wang's Estimator |
|
|
621 | (3) |
|
|
624 | (3) |
|
Topics in Applied Nonparametric Estimation |
|
|
627 | (36) |
|
Nonparametric Methods in Continuous-Time Models |
|
|
627 | (12) |
|
Nonparametric Estimation of Continuous-Time Models |
|
|
627 | (5) |
|
Nonparametric Tests for Continuous-Time Models |
|
|
632 | (1) |
|
|
632 | (1) |
|
|
633 | (3) |
|
|
636 | (3) |
|
Nonparametric Estimation of Average Treatment Effects |
|
|
639 | (6) |
|
|
640 | (2) |
|
An Application: Assessing the Efficacy of Right Heart Catheterization |
|
|
642 | (3) |
|
Nonparametric Estimation of Auction Models |
|
|
645 | (6) |
|
Estimation of First Price Auction Models |
|
|
645 | (3) |
|
Conditionally Independent Private Information Auctions |
|
|
648 | (3) |
|
Copula-Based Semiparametric Estimation of Multivariate Distributions |
|
|
651 | (8) |
|
Some Background on Copula Functions |
|
|
651 | (1) |
|
Semiparametric Copula-Based Multivariate Distributions |
|
|
652 | (1) |
|
A Two-Step Estimation Procedure |
|
|
653 | (2) |
|
A One-Step Efficient Estimation Procedure |
|
|
655 | (2) |
|
Testing Parametric Functional Forms of a Copula |
|
|
657 | (2) |
|
A Semiparametric Transformation Model |
|
|
659 | (3) |
|
|
662 | (1) |
|
A Background Statistical Concepts |
|
|
663 | (34) |
|
Probability, Measure, and Measurable Space |
|
|
663 | (9) |
|
Metric, Norm, and Functional Spaces |
|
|
672 | (8) |
|
Limits and Modes of Convergence |
|
|
680 | (8) |
|
Limit Supremum and Limit Infimum |
|
|
680 | (1) |
|
|
681 | (7) |
|
Inequalities, Laws of Large Numbers, and Central Limit Theorems |
|
|
688 | (6) |
|
|
694 | (3) |
Bibliography |
|
697 | (40) |
Author Index |
|
737 | (7) |
Subject Index |
|
744 | |