Preface |
|
xiii | |
Acknowledgments |
|
xvii | |
|
|
1 | (8) |
|
1.1 Efficiency of Nonparametric Methods |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (3) |
|
|
7 | (2) |
|
|
9 | (26) |
|
|
9 | (2) |
|
2.2 Events, Probabilities, and Random Variables |
|
|
11 | (1) |
|
2.3 Numerical Characteristics of Random Variables |
|
|
12 | (1) |
|
2.4 Discrete Distributions |
|
|
13 | (4) |
|
2.4.1 Binomial Distribution |
|
|
13 | (1) |
|
2.4.2 Poisson Distribution |
|
|
14 | (1) |
|
2.4.3 Negative Binomial Distribution |
|
|
14 | (1) |
|
2.4.4 Geometric Distribution |
|
|
15 | (1) |
|
2.4.5 Hypergeometric Distribution |
|
|
15 | (1) |
|
2.4.6 Multinomial Distribution |
|
|
16 | (1) |
|
2.5 Continuous Distributions |
|
|
17 | (6) |
|
2.5.1 Exponential Distribution |
|
|
17 | (1) |
|
|
16 | (2) |
|
2.5.3 Normal Distribution |
|
|
18 | (1) |
|
2.5.4 Chi-square Distribution |
|
|
19 | (1) |
|
2.5.5 (Student) t-Distribution |
|
|
19 | (1) |
|
|
20 | (1) |
|
2.5.7 Double-Exponential Distribution |
|
|
20 | (1) |
|
2.5.8 Cauchy Distribution |
|
|
21 | (1) |
|
2.5.9 Inverse Gamma Distribution |
|
|
21 | (1) |
|
2.5.10 Dirichlet Distribution |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.5.12 Pareto Distribution |
|
|
22 | (1) |
|
2.5.13 Weibull Distribution |
|
|
23 | (1) |
|
2.6 Mixture Distributions |
|
|
23 | (2) |
|
2.7 Exponential Family of Distributions |
|
|
25 | (1) |
|
2.8 Stochastic Inequalities |
|
|
25 | (2) |
|
2.9 Convergence of Random Variables |
|
|
27 | (4) |
|
|
31 | (4) |
|
|
33 | (2) |
|
|
35 | (16) |
|
|
35 | (1) |
|
3.2 Empirical Distribution Function |
|
|
36 | (2) |
|
3.2.1 Convergence for EDF |
|
|
38 | (1) |
|
|
38 | (3) |
|
|
39 | (2) |
|
|
41 | (3) |
|
3.4.1 Intervals Based on Normal Approximation |
|
|
42 | (2) |
|
|
44 | (4) |
|
|
46 | (1) |
|
|
47 | (1) |
|
3.5.3 Exponential Family of Distributions |
|
|
47 | (1) |
|
|
48 | (3) |
|
|
50 | (1) |
|
|
51 | (22) |
|
4.1 The Bayesian Paradigm |
|
|
51 | (1) |
|
4.2 Ingredients for Bayesian Inference |
|
|
52 | (4) |
|
4.2.1 Quantifying Expert Opinion |
|
|
55 | (1) |
|
|
56 | (3) |
|
|
58 | (1) |
|
4.4 Interval Estimation: Credible Sets |
|
|
59 | (1) |
|
|
60 | (2) |
|
4.5.1 Bayesian Testing of Precise Hypotheses |
|
|
62 | (1) |
|
|
62 | (2) |
|
4.7 Bayesian Computation and Use of WinBUGS |
|
|
64 | (3) |
|
|
67 | (6) |
|
|
71 | (2) |
|
|
73 | (14) |
|
5.1 Joint Distributions of Order Statistics |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
5.4 Asymptotic Distributions of Order Statistics |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (6) |
|
|
84 | (3) |
|
|
87 | (38) |
|
6.1 Kolmogorov--Smirnov Test Statistic |
|
|
88 | (5) |
|
6.2 Smirnov Test to Compare Two Distributions |
|
|
93 | (3) |
|
6.3 Specialized Tests for Goodness of Fit |
|
|
96 | (7) |
|
6.3.1 Anderson--Darling Test |
|
|
96 | (2) |
|
6.3.2 Cramer--von Mises Test |
|
|
98 | (2) |
|
6.3.3 Shapiro--Wilk Test for Normality |
|
|
100 | (1) |
|
6.3.4 Choosing a Goodness-of-Fit Test |
|
|
100 | (3) |
|
|
103 | (5) |
|
|
108 | (6) |
|
|
114 | (3) |
|
|
117 | (8) |
|
|
122 | (3) |
|
|
125 | (28) |
|
|
126 | (1) |
|
|
127 | (5) |
|
|
129 | (3) |
|
|
132 | (1) |
|
7.3 Spearman Coefficient of Rank Correlation |
|
|
132 | (4) |
|
|
134 | (1) |
|
|
135 | (1) |
|
7.4 Wilcoxon Signed Rank Test |
|
|
136 | (3) |
|
7.5 Wilcoxon (Two-Sample) Sum Rank Test |
|
|
139 | (3) |
|
|
141 | (1) |
|
|
142 | (1) |
|
7.6.1 Equivalence of Mann--Whitney and Wilcoxon Sum Rank Test |
|
|
142 | (1) |
|
|
143 | (2) |
|
|
144 | (1) |
|
7.8 Walsh Test for Outliers |
|
|
145 | (1) |
|
|
146 | (7) |
|
|
151 | (2) |
|
|
153 | (14) |
|
|
153 | (4) |
|
8.1.1 Kruskal--Wallis Pairwise Comparisons |
|
|
155 | (2) |
|
8.1.2 Jonckheere--Terpstra Ordered Alternative |
|
|
157 | (1) |
|
|
157 | (4) |
|
8.2.1 Friedman Pairwise Comparisons |
|
|
160 | (1) |
|
8.2.2 Page Test for Ordered Alternative |
|
|
161 | (1) |
|
8.3 Variance Test for Several Populations |
|
|
161 | (2) |
|
8.3.1 Multiple Comparisons for Variance Test |
|
|
162 | (1) |
|
|
163 | (4) |
|
|
166 | (1) |
|
|
167 | (32) |
|
9.1 Chi-Square and Goodness-of-Fit |
|
|
168 | (5) |
|
9.2 Contingency Tables: Testing for Homogeneity and Independence |
|
|
173 | (4) |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
179 | (2) |
|
|
181 | (2) |
|
|
183 | (2) |
|
9.7 Central Limit Theorem for Multinomial Probabilities |
|
|
185 | (1) |
|
|
186 | (2) |
|
|
188 | (11) |
|
|
196 | (3) |
|
10 Estimating Distribution Functions |
|
|
199 | (24) |
|
|
199 | (1) |
|
10.2 Nonparametric Maximum Likelihood |
|
|
200 | (1) |
|
10.3 Kaplan--Meier Estimator |
|
|
201 | (7) |
|
10.4 Confidence Interval for F |
|
|
208 | (1) |
|
|
209 | (2) |
|
10.6 Semi-Parametric Inference |
|
|
211 | (2) |
|
|
213 | (1) |
|
10.8 Empirical Likelihood |
|
|
214 | (3) |
|
10.8.1 Confidence Interval for the Mean |
|
|
215 | (2) |
|
10.8.2 Confidence Interval for the Median |
|
|
217 | (1) |
|
|
217 | (6) |
|
|
220 | (3) |
|
|
223 | (12) |
|
|
223 | (3) |
|
11.2 Kernel and Bandwidth |
|
|
226 | (7) |
|
11.2.1 Bivariate Density Estimators |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
234 | (1) |
|
12 Beyond Linear Regression |
|
|
235 | (26) |
|
12.1 Least-Squares Regression |
|
|
236 | (1) |
|
|
236 | (4) |
|
12.2.1 Sen--Theil Estimator of Regression Slope |
|
|
239 | (1) |
|
|
240 | (6) |
|
12.3.1 Least Absolute Residuals Regression |
|
|
240 | (1) |
|
|
241 | (1) |
|
12.3.3 Least Trimmed Squares Regression |
|
|
241 | (1) |
|
12.3.4 Weighted Least-Squares Regression |
|
|
241 | (1) |
|
12.3.5 Least Median Squares Regression |
|
|
242 | (4) |
|
|
246 | (3) |
|
12.4.1 Graphical Solution to Regression |
|
|
247 | (2) |
|
12.4.2 Pool Adjacent Violators Algorithm |
|
|
249 | (1) |
|
12.5 Generalized Linear Models |
|
|
249 | (7) |
|
|
251 | (1) |
|
|
251 | (2) |
|
12.5.3 Deviance Analysis in GLM |
|
|
253 | (3) |
|
|
256 | (5) |
|
|
258 | (3) |
|
13 Curve Fitting Techniques |
|
|
261 | (22) |
|
|
263 | (4) |
|
13.1.1 Nadaraya--Watson Estimator |
|
|
263 | (2) |
|
13.1.2 Gasser--Muller Estimator |
|
|
265 | (1) |
|
13.1.3 Local Polynomial Estimator |
|
|
265 | (2) |
|
13.2 Nearest Neighbor Methods |
|
|
267 | (3) |
|
|
267 | (3) |
|
|
270 | (1) |
|
|
270 | (7) |
|
13.4.1 Interpolating Splines |
|
|
271 | (2) |
|
|
273 | (1) |
|
13.4.2.1 Smoothing Splines as Linear Estimators |
|
|
274 | (1) |
|
13.4.3 Selecting and Assessing the Regression Estimator |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
277 | (6) |
|
|
280 | (3) |
|
|
283 | (22) |
|
14.1 Introduction to Wavelets |
|
|
283 | (3) |
|
14.2 How Do the Wavelets Work? |
|
|
286 | (8) |
|
|
286 | (4) |
|
14.2.2 Wavelets in the Language of Signal Processing |
|
|
290 | (4) |
|
|
294 | (7) |
|
14.3.1 Universal Threshold |
|
|
295 | (6) |
|
|
301 | (4) |
|
|
303 | (2) |
|
|
305 | (22) |
|
|
305 | (2) |
|
15.2 Nonparametric Bootstrap |
|
|
307 | (4) |
|
|
307 | (4) |
|
15.2.2 Estimating Standard Error |
|
|
311 | (1) |
|
15.3 Bias Correction for Nonparametric Intervals |
|
|
311 | (3) |
|
|
314 | (1) |
|
|
315 | (2) |
|
|
317 | (4) |
|
15.7 More on the Bootstrap |
|
|
321 | (1) |
|
|
322 | (5) |
|
|
324 | (3) |
|
|
327 | (16) |
|
|
328 | (1) |
|
|
328 | (3) |
|
|
331 | (5) |
|
16.3 EM and Order Statistics |
|
|
336 | (1) |
|
|
337 | (2) |
|
16.5 Infection Pattern Estimation |
|
|
339 | (1) |
|
|
340 | (3) |
|
|
341 | (2) |
|
|
343 | (26) |
|
17.1 Discriminant Analysis |
|
|
344 | (2) |
|
17.1.1 Bias Versus Variance |
|
|
344 | (1) |
|
|
345 | (1) |
|
17.1.3 Bayesian Decision Theory |
|
|
346 | (1) |
|
17.2 Linear Classification Models |
|
|
346 | (5) |
|
17.2.1 Logistic Regression as Classifier |
|
|
347 | (4) |
|
17.3 Nearest Neighbor Classification |
|
|
351 | (2) |
|
17.3.1 The Curse of Dimensionality |
|
|
351 | (1) |
|
17.3.2 Constructing the Nearest-Neighbor Classifier |
|
|
352 | (1) |
|
|
353 | (5) |
|
|
355 | (2) |
|
17.4.2 Implementing the Neural Network |
|
|
357 | (1) |
|
17.4.3 Projection Pursuit |
|
|
357 | (1) |
|
17.5 Binary Classification Trees |
|
|
358 | (8) |
|
|
361 | (1) |
|
|
362 | (3) |
|
17.5.3 General Tree Classifiers |
|
|
365 | (1) |
|
|
366 | (3) |
|
|
367 | (2) |
|
|
369 | (20) |
|
|
369 | (8) |
|
18.1.1 Updating Dirichlet Process Priors |
|
|
373 | (3) |
|
18.1.2 Generalized Dirichlet Processes |
|
|
376 | (1) |
|
18.2 Bayesian Contingency Tables and Categorical Models |
|
|
377 | (4) |
|
18.3 Bayesian Inference in Infinitely Dimensional Nonparametric Problems |
|
|
381 | (3) |
|
18.3.1 BAMS Wavelet Shrinkage |
|
|
381 | (3) |
|
|
384 | (5) |
|
|
386 | (3) |
|
|
389 | (8) |
|
|
389 | (4) |
|
A.2 Built-in Functions and Common Distributions in BUGS |
|
|
393 | (4) |
|
|
397 | (10) |
|
|
397 | (2) |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (5) |
R Index |
|
407 | (4) |
Author Index |
|
411 | (6) |
Subject Index |
|
417 | |