Muutke küpsiste eelistusi

Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below [Pehme köide]

  • Formaat: Paperback / softback, 161 pages, kõrgus x laius: 254x178 mm, kaal: 255 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 01-Jan-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470427656
  • ISBN-13: 9781470427658
Teised raamatud teemal:
Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci  Curvature Bounded from Below
  • Formaat: Paperback / softback, 161 pages, kõrgus x laius: 254x178 mm, kaal: 255 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 01-Jan-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470427656
  • ISBN-13: 9781470427658
Teised raamatud teemal:
Continuing her earlier analysis of the differential structure of metric measure spaces, Gigli makes a proposal by showing that every metric measure space possesses a first-order differential structure and that a second-order one arises when a lower Ricci bound is imposed. Her constructions are analytic in nature, she says, in the sense that they provide tools to make computations on metric measure spaces without having an a priori relation with their geometry. Annotation ©2018 Ringgold, Inc., Portland, OR (protoview.com)
Introduction
The machinery of $L^p(\mathfrak{m})$-normed modules
First order differential structure of general metric measure spaces
Second order differential structure of $\mathsf{RCD}(K,\infty)$ spaces
Bibliography
Nicola Gigli, SISSA, Trieste, Italy.