Muutke küpsiste eelistusi

Nuclear Astrophysics: A Course of Lectures [Kõva köide]

  • Formaat: Hardback, 284 pages, kõrgus x laius: 254x178 mm, kaal: 671 g, 70 Line drawings, black and white; 70 Illustrations, black and white
  • Ilmumisaeg: 19-Feb-2018
  • Kirjastus: CRC Press
  • ISBN-10: 1138588164
  • ISBN-13: 9781138588165
Teised raamatud teemal:
  • Formaat: Hardback, 284 pages, kõrgus x laius: 254x178 mm, kaal: 671 g, 70 Line drawings, black and white; 70 Illustrations, black and white
  • Ilmumisaeg: 19-Feb-2018
  • Kirjastus: CRC Press
  • ISBN-10: 1138588164
  • ISBN-13: 9781138588165
Teised raamatud teemal:

In this volume the physics involved in various astrophysical processes like the synthesis of light and heavier elements, explosive burning processes, core collapse supernova etc have been critically addressed with minimum mathematical derivations so as to suit all faculties of the readers. For graduate students there are solved problems with exercises at the end of each chapter, for researchers some recent works on the calculation of physical parameters of astrophysical importance like the calculation of Sfactors at low energies have been included, and for amateur readers there are lot of history, information and discussion on the astronuclear phenomenon.

Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

1 Basics of Nuclear Astrophysics
11(50)
1.1 Introduction
11(5)
1.2 Nuclear Physics
16(31)
1.2.1 Branching of Radioactivity
17(1)
1.2.2 Binding energy
18(3)
1.2.3 Nuclear Reactions
21(1)
1.2.4 Reaction Q-value
22(1)
1.2.5 α decay
23(2)
1.2.6 β-decay and electron capture
25(2)
1.2.7 γ-decay
27(1)
1.2.8 Nuclear fusion
28(1)
1.2.9 The Coulomb barrier
29(7)
1.2.10 Reaction rate in a medium
36(2)
1.2.11 Compound nuclear hypothesis
38(3)
1.2.12 Breit-Wigners one-level formula
41(1)
1.2.13 Cross-sections and their derivations
42(5)
1.3 Particle physics
47(3)
1.4 Astrophysics
50(1)
1.5 Scopes of nuclear astrophysics
51(10)
2 Nucleosynthesis
61(32)
2.1 Introduction
61(6)
2.2 Primordial nucleosynthesis
67(6)
2.3 Stellar nucleosynthesis up to iron (A ≤: 60)
73(8)
2.4 Stellar nucleosynthesis beyond iron (A gt; 60)
81(12)
3 Sources of Energy in Stars
93(20)
3.1 Introduction
93(2)
3.2 Hydrogen burning and p-p (proton-proton) chain
95(2)
3.3 CNO Cycles
97(4)
3.4 The Hot CNO Cycle and the Rapid Proton Process
101(2)
3.5 The Early rp--Process and Bottleneck Reactions
103(2)
3.6 Helium (4He) Burning
105(1)
3.7 The Triple-α Process
105(2)
3.8 Heavier Element α-Burning
107(1)
3.8.1 Neutron Production in (α, n) Reactions
107(1)
3.9 The s and r-Neutron Processes
107(6)
4 Opportunities in Nuclear Astrophysics
113(64)
4.1 Introduction
113(1)
4.2 Thermonuclear rates and reaction networks
114(8)
4.2.1 Thermonuclear Reaction Rates
114(3)
4.2.2 Nuclear Reaction Networks
117(2)
4.2.3 Burning Processes in Stellar Environments
119(3)
4.3 Experimental Techniques in Nuclear Astrophysics
122(10)
4.3.1 Choice of Target
123(4)
4.3.2 Choice of detectors
127(1)
4.3.3 Recoil separators
128(1)
4.3.4 Ground State Properties
128(3)
4.3.5 Resonances Properties
131(1)
4.3.6 Transfer Reactions
132(1)
4.4 Experimental Nuclear Astrophysics
132(8)
4.4.1 Energy ranges for measurement of cross-sections
134(1)
4.4.2 Radioactive Beams
135(3)
4.4.3 In-Flight Separators
138(2)
4.5 Cross Section Predictions and Reaction Rates
140(25)
4.5.1 Thermonuclear Rates from Statistical Model Calculations
142(10)
4.5.2 Astrophysical S-factors of radiative capture reactions
152(4)
4.5.3 Sub-barrier fusion and selective resonant tunneling cross section
156(9)
4.6 Weak-Interaction Rates
165(12)
4.6.1 Electron Capture and β-Decay
166(3)
4.6.2 Neutrino-Induced Reactions
169(8)
5 Explosive Burning Processes
177(16)
5.1 Introduction
177(2)
5.2 Explosive H-Burning
179(4)
5.3 Explosive He-Burning
183(2)
5.4 Explosive C- and Ne-Burning
185(1)
5.5 Explosive O-Burning
185(1)
5.6 Explosive Si-Burning
186(3)
5.7 The r-Process
189(4)
6 Core Collapse Supernovae
193(26)
6.1 Introduction
193(5)
6.2 General Scenario
198(2)
6.3 Role of weak-Interaction rates in presupernova evolution
200(2)
6.4 The Role of Electron Capture During Collapse
202(6)
6.5 Neutrino-Induced Processes During a Supernova Collapse
208(1)
6.6 Type II Supernovae Nucleosynthesis
209(10)
7 Basic Components of Astrophysical r-Process
219(12)
7.1 Role of Nuclear Physics in the r-process
220(3)
7.2 Parameters controlling the r-process
223(1)
7.3 r-Process Sites
224(7)
7.3.1 Type II Supernovae
224(2)
7.3.2 Neutron Star Mergers
226(1)
7.3.3 r-Process Overview
226(5)
8 Nuclear Processes in Explosive Binary Stars
231(12)
8.1 Introduction
231(1)
8.2 Nova Explosions
232(2)
8.3 X-Ray Bursts
234(2)
8.4 Thermonuclear Runaway
236(3)
8.5 The rp-Process
239(2)
8.6 X-Ray Pulsars
241(1)
8.7 Accretion Processes on Neutron Stars and Black holes
241(2)
9 Formation of stars and galaxies
243(12)
9.1 Introduction
243(1)
9.2 Life cycle of Stars
244(11)
10 Role of Computation in Nuclear Astrophysics
255(12)
10.1 Introduction
255(4)
10.2 Computational versus Analytic Methods
259(1)
10.3 Major Areas of Application of CNA
259(8)
10.3.1 Stellar structure and evolution
260(1)
10.3.2 Radiation transfer and stellar atmospheres
260(1)
10.3.3 Astrophysical fluid dynamics
260(1)
10.3.4 Planetary, stellar and galactic-dynamics
260(1)
10.3.5 Numerical Methods
261(1)
10.3.6 Stellar Structure Codes
261(1)
10.3.7 Radiative Transfer Codes
261(1)
10.3.8 N-body Codes
262(1)
10.3.9 Codes for Astrophysical Fluid Dynamics
262(1)
10.3.10 Relation to other fields
262(1)
10.3.11 Numerical Analysis
262(2)
10.3.12 Computer Science
264(1)
10.3.13 Relevant History
264(3)
11 Key challeges and future scopes
267(16)
11.1 Introduction
267(2)
11.2 Key challenges
269(1)
11.3 Demand for infrastructure expansion
270(2)
11.4 Progress Scenario
272(7)
11.4.1 Available Data Resources
275(1)
11.4.2 Future Data Developments
276(3)
11.5 Present and Future Projects & their Benefits
279(4)
11.5.1 Astronomical observatories
279(1)
11.5.2 Benefit to theory and computation
280(1)
11.5.3 Benefit to the society
281(2)
Index 283
Md A. Khan is Assistant Professor in the Department of Physics, Aliah University, Kolkata.