Introduction |
|
1 | (1) |
Structure of the book |
|
1 | (1) |
Exercises |
|
2 | (1) |
Short overview of the individual chapters |
|
2 | (2) |
Technical details |
|
4 | (1) |
Commemoration |
|
4 | (1) |
Acknowledgements |
|
5 | (2) |
|
|
7 | (30) |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (2) |
|
|
13 | (2) |
|
1.3 Greatest Common Divisor |
|
|
15 | (4) |
|
|
19 | (2) |
|
1.4 Irreducible and Prime Numbers |
|
|
21 | (2) |
|
|
23 | (1) |
|
1.5 The Fundamental Theorem of Arithmetic |
|
|
24 | (3) |
|
|
27 | (1) |
|
|
28 | (5) |
|
|
33 | (4) |
|
|
37 | (36) |
|
2.1 Elementary Properties |
|
|
37 | (3) |
|
|
40 | (1) |
|
2.2 Residue Systems and Residue Classes |
|
|
41 | (3) |
|
|
44 | (2) |
|
|
46 | (3) |
|
|
49 | (1) |
|
2.4 The Euler--Fermat Theorem |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (5) |
|
|
57 | (1) |
|
2.6 Simultaneous Systems of Congruences |
|
|
58 | (6) |
|
|
64 | (2) |
|
|
66 | (1) |
|
|
67 | (1) |
|
2.8 Operations with Residue Classes |
|
|
68 | (2) |
|
|
70 | (3) |
|
Chapter 3 Congruences of Higher Degree |
|
|
73 | (28) |
|
3.1 Number of Solutions and Reduction |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (2) |
|
|
78 | (2) |
|
|
80 | (4) |
|
|
84 | (2) |
|
3.4 Discrete Logarithm (Index) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (1) |
|
3.6 Chevalley's Theorem, Konig--Rados Theorem |
|
|
91 | (4) |
|
|
95 | (1) |
|
3.7 Congruences with Prime Power Moduli |
|
|
96 | (2) |
|
|
98 | (3) |
|
Chapter 4 Legendre and Jacobi Symbols |
|
|
101 | (12) |
|
4.1 Quadratic Congruences |
|
|
101 | (2) |
|
|
103 | (1) |
|
4.2 Quadratic Reciprocity |
|
|
104 | (4) |
|
|
108 | (1) |
|
|
109 | (2) |
|
|
111 | (2) |
|
|
113 | (52) |
|
|
113 | (4) |
|
|
117 | (1) |
|
5.2 Fermat and Mersenne Primes |
|
|
118 | (6) |
|
|
124 | (1) |
|
5.3 Primes in Arithmetic Progressions |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
128 | (5) |
|
|
133 | (1) |
|
5.5 Gaps between Consecutive Primes |
|
|
134 | (5) |
|
|
139 | (1) |
|
5.6 The Sum of Reciprocals of Primes |
|
|
140 | (7) |
|
|
147 | (2) |
|
|
149 | (8) |
|
|
157 | (3) |
|
|
160 | (3) |
|
|
163 | (2) |
|
Chapter 6 Arithmetic Functions |
|
|
165 | (46) |
|
6.1 Multiplicative and Additive Functions |
|
|
165 | (2) |
|
|
167 | (3) |
|
6.2 Some Important Functions |
|
|
170 | (3) |
|
|
173 | (2) |
|
|
175 | (2) |
|
|
177 | (1) |
|
|
178 | (7) |
|
|
185 | (1) |
|
6.5 Summation and Inversion Functions |
|
|
186 | (3) |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
193 | (2) |
|
|
195 | (11) |
|
|
206 | (1) |
|
6.8 Characterization of Additive Functions |
|
|
207 | (2) |
|
|
209 | (2) |
|
Chapter 7 Diophantine Equations |
|
|
211 | (52) |
|
7.1 Linear Diophantine Equation |
|
|
212 | (2) |
|
|
214 | (1) |
|
|
215 | (2) |
|
|
217 | (1) |
|
7.3 Some Elementary Methods |
|
|
218 | (3) |
|
|
221 | (2) |
|
|
223 | (6) |
|
|
229 | (1) |
|
|
230 | (5) |
|
|
235 | (1) |
|
|
236 | (4) |
|
|
240 | (1) |
|
7.7 Fermat's Last Theorem |
|
|
241 | (8) |
|
|
249 | (2) |
|
|
251 | (4) |
|
|
255 | (1) |
|
|
256 | (5) |
|
|
261 | (2) |
|
Chapter 8 Diophantine Approximation |
|
|
263 | (22) |
|
8.1 Approximation of Irrational Numbers |
|
|
263 | (5) |
|
|
268 | (2) |
|
|
270 | (4) |
|
|
274 | (1) |
|
|
275 | (5) |
|
|
280 | (1) |
|
8.4 Distribution of Fractional Parts |
|
|
281 | (2) |
|
|
283 | (2) |
|
Chapter 9 Algebraic and Transcendental Numbers |
|
|
285 | (26) |
|
|
285 | (3) |
|
|
288 | (1) |
|
9.2 Minimal Polynomial and Degree |
|
|
288 | (2) |
|
|
290 | (1) |
|
9.3 Operations with Algebraic Numbers |
|
|
291 | (3) |
|
|
294 | (2) |
|
9.4 Approximation of Algebraic Numbers |
|
|
296 | (4) |
|
|
300 | (1) |
|
|
301 | (5) |
|
|
306 | (1) |
|
|
306 | (2) |
|
|
308 | (3) |
|
Chapter 10 Algebraic Number Fields |
|
|
311 | (30) |
|
|
311 | (3) |
|
|
314 | (1) |
|
10.2 Simple Algebraic Extensions |
|
|
315 | (4) |
|
|
319 | (1) |
|
|
320 | (10) |
|
|
330 | (1) |
|
|
331 | (3) |
|
|
334 | (1) |
|
|
335 | (5) |
|
|
340 | (1) |
|
|
341 | (36) |
|
11.1 Ideals and Factor Rings |
|
|
341 | (4) |
|
|
345 | (2) |
|
11.2 Elementary Connections to Number Theory |
|
|
347 | (3) |
|
|
350 | (1) |
|
11.3 Unique Factorization, Principal Ideal Domains, and Euclidean Rings |
|
|
350 | (5) |
|
|
355 | (2) |
|
11.4 Divisibility of Ideals |
|
|
357 | (4) |
|
|
361 | (2) |
|
|
363 | (9) |
|
|
372 | (1) |
|
|
373 | (3) |
|
|
376 | (1) |
|
Chapter 12 Combinatorial Number Theory |
|
|
377 | (44) |
|
12.1 All Sums Are Distinct |
|
|
377 | (7) |
|
|
384 | (2) |
|
|
386 | (7) |
|
|
393 | (1) |
|
|
394 | (8) |
|
|
402 | (1) |
|
|
403 | (4) |
|
|
407 | (1) |
|
12.5 Covering Congruences |
|
|
408 | (4) |
|
|
412 | (1) |
|
12.6 Additive Complements |
|
|
412 | (6) |
|
|
418 | (3) |
Answers and Hints |
|
421 | (110) |
|
|
421 | (10) |
|
|
431 | (11) |
|
A.3 Congruences of Higher Degree |
|
|
442 | (10) |
|
A.4 Legendre and Jacobi Symbols |
|
|
452 | (3) |
|
|
455 | (12) |
|
|
467 | (16) |
|
A.7 Diophantine Equations |
|
|
483 | (18) |
|
A.8 Diophantine Approximation |
|
|
501 | (4) |
|
A.9 Algebraic and Transcendental Numbers |
|
|
505 | (5) |
|
A.10 Algebraic Number Fields |
|
|
510 | (6) |
|
|
516 | (5) |
|
A.12 Combinatorial Number Theory |
|
|
521 | (10) |
Historical Notes |
|
531 | (6) |
Tables |
|
537 | (1) |
Primes 2--1733 |
|
538 | (1) |
Primes 1741--3907 |
|
539 | (1) |
Prime Factorization |
|
540 | (1) |
Mersenne Numbers |
|
541 | (1) |
Fermat Numbers |
|
542 | (1) |
Index |
|
543 | |