Muutke küpsiste eelistusi

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties: Applications in Magnet Design 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 114 pages, kõrgus x laius: 235x155 mm, kaal: 3317 g, 8 Illustrations, color; 12 Illustrations, black and white; XXII, 114 p. 20 illus., 8 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 09-Aug-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319412930
  • ISBN-13: 9783319412931
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 114 pages, kõrgus x laius: 235x155 mm, kaal: 3317 g, 8 Illustrations, color; 12 Illustrations, black and white; XXII, 114 p. 20 illus., 8 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 09-Aug-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319412930
  • ISBN-13: 9783319412931
Teised raamatud teemal:
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of

the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.

Introduction.- Magnetoquasistatic Approximation of Maxwell"s Equations, UncertaintyQuantification Principles.- Magnetoquasistatic Model and its Numerical Approximation.- Parametric Model, Continuity and First Order Sensitivity Analysis.- Uncertainty Quantification.- Uncertainty Quantification for Magnets.- Conclusion and Outlook.
Introduction.- Magnetoquasistatic Approximation of Maxwell's Equations,
Uncertainty
Quantification Principles.- Magnetoquasistatic Model and its Numerical
Approximation.- Parametric Model, Continuity and First Order Sensitivity
Analysis.- Uncertainty Quantification.- Uncertainty Quantification for
Magnets.- Conclusion and Outlook.