Preface |
|
xi | |
|
|
1 | (216) |
|
|
3 | (27) |
|
1.1 Setting and basic terminology |
|
|
3 | (3) |
|
1.2 Center manifold reduction |
|
|
6 | (2) |
|
|
8 | (2) |
|
|
10 | (1) |
|
1.5 Simplest bifurcations of planar ODEs |
|
|
11 | (14) |
|
1.6 Pontryagin--Melnikov theory |
|
|
25 | (5) |
|
2 One-Parameter Bifurcations of Maps |
|
|
30 | (20) |
|
2.1 Codim 1 bifurcations of fixed points and cycles |
|
|
30 | (13) |
|
2.2 Some global codim 1 bifurcations |
|
|
43 | (7) |
|
3 Two-Parameter Local Bifurcations of Maps |
|
|
50 | (135) |
|
3.1 Cusp and generalized period-doubling bifurcations |
|
|
51 | (3) |
|
3.2 CH (Chenciner bifurcation) |
|
|
54 | (7) |
|
|
61 | (26) |
|
3.4 Fold--flip and fold--Neimark--Sacker bifurcations |
|
|
87 | (19) |
|
3.5 Flip--Neimark--Sacker and double Neimark--Sacker bifurcations |
|
|
106 | (26) |
|
3.6 Historical perspective |
|
|
132 | (2) |
|
|
134 | (51) |
|
4 Center Manifold Reduction for Local Bifurcations |
|
|
185 | (32) |
|
4.1 The homological equation and its solutions |
|
|
186 | (4) |
|
4.2 Critical normal form coefficients for local codim 2 bifurcations |
|
|
190 | (14) |
|
4.3 Branch switching at local codim 2 bifurcations |
|
|
204 | (6) |
|
Appendix: Fifth-order coefficients for flip--Neimark--Sacker and double Neimark--Sacker |
|
|
210 | (7) |
|
|
217 | (102) |
|
5 Numerical Methods and Algorithms |
|
|
219 | (24) |
|
5.1 Continuation of cycles |
|
|
219 | (1) |
|
5.2 Continuation of codimension 1 bifurcation curves |
|
|
220 | (4) |
|
5.3 Computation of normal form coefficients |
|
|
224 | (5) |
|
5.4 Computation of one-dimensional invariant manifolds of saddle fixed points |
|
|
229 | (3) |
|
5.5 Continuation of connecting orbits |
|
|
232 | (6) |
|
5.6 Bifurcations of homoclinic orbits |
|
|
238 | (3) |
|
5.7 Computation of Lyapunov exponents |
|
|
241 | (2) |
|
6 Features and Functionality of MatcontM |
|
|
243 | (15) |
|
6.1 General description of MatcontM |
|
|
244 | (4) |
|
|
248 | (2) |
|
6.3 Numerical continuation |
|
|
250 | (4) |
|
6.4 Calling the Continuer |
|
|
254 | (4) |
|
|
258 | (61) |
|
7.1 Tutorial 1: iteration of maps and continuation of fixed points and cycles |
|
|
258 | (16) |
|
7.2 Tutorial 2: two-parameter local bifurcation analysis |
|
|
274 | (20) |
|
7.3 Tutorial 2: invariant manifolds and connecting orbits |
|
|
294 | (14) |
|
7.4 Tutorial 4: computation of Lyapunov exponents |
|
|
308 | (11) |
|
|
319 | (70) |
|
8 The Generalized Henon Map |
|
|
321 | (33) |
|
|
321 | (3) |
|
8.2 Homoclinic bifurcations and GHM |
|
|
324 | (5) |
|
8.3 Bifurcation diagrams of GHM |
|
|
329 | (19) |
|
|
348 | (3) |
|
|
351 | (3) |
|
|
354 | (8) |
|
|
354 | (3) |
|
9.2 Numerical continuation |
|
|
357 | (1) |
|
9.3 Derivatives for the adaptive control map |
|
|
358 | (4) |
|
10 Duopoly Model of Kopel |
|
|
362 | (23) |
|
10.1 Description of the model |
|
|
362 | (1) |
|
10.2 Fixed points and codim 1 bifurcations |
|
|
363 | (2) |
|
10.3 Normal forms of codim 1 bifurcations |
|
|
365 | (2) |
|
10.4 Codim 2 bifurcations |
|
|
367 | (3) |
|
10.5 Codim 2 normal form coefficients |
|
|
370 | (2) |
|
10.6 Numerical analysis using MatcontM |
|
|
372 | (10) |
|
|
382 | (3) |
|
11 The SEIR Epidemic Model |
|
|
385 | (4) |
|
|
385 | (1) |
|
|
386 | (3) |
References |
|
389 | (11) |
Index |
|
400 | |