Muutke küpsiste eelistusi

Numerical Continuation Methods: An Introduction Softcover reprint of the original 1st ed. 1990 [Pehme köide]

  • Formaat: Paperback / softback, 388 pages, kõrgus x laius: 235x155 mm, kaal: 616 g, XIV, 388 p., 1 Paperback / softback
  • Sari: Springer Series in Computational Mathematics 13
  • Ilmumisaeg: 01-Oct-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642647642
  • ISBN-13: 9783642647642
Teised raamatud teemal:
  • Formaat: Paperback / softback, 388 pages, kõrgus x laius: 235x155 mm, kaal: 616 g, XIV, 388 p., 1 Paperback / softback
  • Sari: Springer Series in Computational Mathematics 13
  • Ilmumisaeg: 01-Oct-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642647642
  • ISBN-13: 9783642647642
Teised raamatud teemal:
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.

Muu info

Springer Book Archives
1 Introduction.- 2 The Basic Principles of Continuation Methods.- 2.1
Implicitly Defined Curves.- 2.2 The Basic Concepts of PC Methods.- 2.3 The
Basic Concepts of PL Methods.- 3 Newtons Method as Corrector.- 3.1
Motivation.- 3.2 The Moore-Penrose Inverse in a Special Case.- 3.3 A Newtons
Step for Underdetermined Nonlinear Systems.- 3.4 Convergence Properties of
Newtons Method.- 4 Solving the Linear Systems.- 4.1 Using a QR
Decomposition.- 4.2 Givens Rotations for Obtaining a QR Decomposition.- 4.3
Error Analysis.- 4.4 Scaling of the Dependent Variables.- 4.5 Using LU
Decompositions.- 5 Convergence of Euler-Newton-Like Methods.- 5.1 An
Approximate Euler-Newton Method.- 5.2 A Convergence Theorem for PC Methods.-
6 Steplength Adaptations for the Predictor.- 6.1 Steplength Adaptation by
Asymptotic Expansion.- 6.2 The Steplength Adaptation of Den Heijer &
Rheinboldt.- 6.3 Steplength Strategies Involving Variable Order Predictors.-
7 Predictor-Corrector Methods Using Updating.- 7.1 Broydens Good Update
Formula.- 7.2 Broyden Updates Along a Curve.- 8 Detection of Bifurcation
Points Along a Curve.- 8.1 Simple Bifurcation Points.- 8.2 Switching Branches
Via Perturbation.- 8.3 Branching Off Via the Bifurcation Equation.- 9
Calculating Special Points of the Solution Curve.- 9.1 Introduction.- 9.2
Calculating Zero Points f(c(s)) = 0.- 9.3 Calculating Extremal Points
minsf((c(s)).- 10 Large Scale Problems.- 10.1 Introduction.- 10.2 General
Large Scale Solvers.- 10.3 Nonlinear Conjugate Gradient Methods as
Correctors.- 11 Numerically Implementable Existence Proofs.- 11.1 Preliminary
Remarks.- 11.2 An Example of an Implementable Existence Theorem.- 11.3
Several Implementations for Obtaining Brouwer Fixed Points.- 11.4 Global
Newton and Global Homotopy Methods.- 11.5Multiple Solutions.- 11.6 Polynomial
Systems.- 11.7 Nonlinear Complementarity.- 11.8 Critical Points and
Continuation Methods.- 12 PL Continuation Methods.- 12.1 Introduction.- 12.2
PL Approximations.- 12.3 A PL Algorithm for Tracing H(u) = 0.- 12.4 Numerical
Implementation of a PL Continuation Algorithm.- 12.5 Integer Labeling.- 12.6
Truncation Errors.- 13 PL Homotopy Algorithms.- 13.1 Set-Valued Maps.- 13.2
Merrills Restart Algorithm.- 13.3 Some Triangulations and their
Implementations.- 13.4 The Homotopy Algorithm of Eaves & Saigal.- 13.5 Mixing
PL and Newton Steps.- 13.6 Automatic Pivots for the Eaves-Saigal Algorithm.-
14 General PL Algorithms on PL Manifolds.- 14.1 PL Manifolds.- 14.2
Orientation and Index.- 14.3 Lemkes Algorithm for the Linear Complementarity
Problem.- 14.4 Variable Dimension Algorithms.- 14.5 Exploiting Special
Structure.- 15 Approximating Implicitly Defined Manifolds.- 15.1
Introduction.- 15.2 Newtons Method and Orthogonal Decompositions Revisited.-
15.3 The Moving Frame Algorithm.- 15.4 Approximating Manifolds by PL
Methods.- 15.5 Approximation Estimates.- 16 Update Methods and their
Numerical Stability.- 16.1 Introduction.- 16.2 Updates Using the
Sherman-Morrison Formula.- 16.3 QR Factorization.- 16.4 LU Factorization.- P1
A Simple PC Continuation Method.- P2 A PL Homotopy Method.- P3 A Simple
Euler-Newton Update Method.- P4 A Continuation Algorithm for Handling
Bifurcation.- P5 A PL Surface Generator.- P6 SCOUT Simplicial Continuation
Utilities.- P6.1 Introduction.- P6.2 Computational Algorithms.- P6.3
Interactive Techniques.- P6.4 Commands.- P6.5 Example: Periodic Solutions to
a Differential Delay Equation.- Index and Notation.