Preface |
|
xiii | |
|
|
1 | (36) |
|
1.1 Scientific Computation, Numerical Analysis, and Engineering |
|
|
2 | (1) |
|
1.2 Computational Electromagnetics |
|
|
3 | (4) |
|
1.2.1 Applications of CEM Tools |
|
|
5 | (1) |
|
1.2.2 Types of CEM Methods |
|
|
6 | (1) |
|
1.2.3 Mesh and Grid Generation |
|
|
7 | (1) |
|
1.3 Accuracy and Efficiency |
|
|
7 | (2) |
|
1.4 Programming Languages |
|
|
9 | (1) |
|
1.5 Writing and Debugging Numerical Codes |
|
|
9 | (2) |
|
1.6 Overview of Electromagnetic Field Theory |
|
|
11 | (22) |
|
1.6.1 Electromagnetic Field and Source Quantities |
|
|
11 | (1) |
|
1.6.2 Maxwell's Equations |
|
|
12 | (1) |
|
1.6.3 Constitutive Relations |
|
|
12 | (1) |
|
1.6.4 Impressed and Induced Currents |
|
|
13 | (1) |
|
1.6.5 The Equivalence Principle and Magnetic Currents |
|
|
13 | (1) |
|
|
14 | (3) |
|
1.6.7 Gradient, Curl, and Divergence |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (2) |
|
1.6.10 Boundary Conditions |
|
|
20 | (1) |
|
1.6.11 Time-and Frequency-Domain Representations |
|
|
20 | (1) |
|
|
21 | (3) |
|
1.6.13 Propagating, Standing, and Evanescent Waves |
|
|
24 | (1) |
|
|
25 | (3) |
|
|
28 | (1) |
|
1.6.16 Initial Value Problems and Boundary Value Problems |
|
|
29 | (1) |
|
|
30 | (1) |
|
1.6.18 2-D Problems and the Transverse Electric and Transverse Magnetic Polarizations |
|
|
30 | (2) |
|
1.6.19 Radiation and Scattering Problems |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
34 | (3) |
|
Chapter 2 Basic Numerical Tasks |
|
|
37 | (18) |
|
2.1 Introduction to MATLAB Programming |
|
|
37 | (8) |
|
|
38 | (1) |
|
|
39 | (3) |
|
|
42 | (2) |
|
|
44 | (1) |
|
2.1.5 Other MATLAB Commands |
|
|
45 | (1) |
|
2.2 Numerical Differentiation |
|
|
45 | (2) |
|
2.2.1 Code Example: Central Difference Rule |
|
|
47 | (1) |
|
2.3 Numerical Integration |
|
|
47 | (2) |
|
2.3.1 Code Example: Midpoint Integration Rule |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (3) |
|
2.5.1 Code Example: Polynomial Fitting |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
53 | (2) |
|
Chapter 3 Finite Difference Methods |
|
|
55 | (68) |
|
3.1 Basic Components of Finite Difference Solvers |
|
|
56 | (4) |
|
|
56 | (1) |
|
|
57 | (1) |
|
3.1.3 Boundary Conditions |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
3.2 Wave Equation: 1-D FDTD Method |
|
|
60 | (15) |
|
|
61 | (1) |
|
3.2.2 Update Equation for the 1-D Wave Equation |
|
|
61 | (1) |
|
|
62 | (1) |
|
3.2.4 Boundary Conditions |
|
|
62 | (1) |
|
|
63 | (1) |
|
3.2.6 Source Turn-On Functions |
|
|
64 | (1) |
|
3.2.7 Code Example: 1-D FDTD Algorithm |
|
|
65 | (3) |
|
|
68 | (1) |
|
|
69 | (3) |
|
|
72 | (3) |
|
3.3 Laplace's Equation: 2-D Finite Difference Method |
|
|
75 | (9) |
|
3.3.1 Example: 2-D FD Method on a 4 by 4 Grid |
|
|
77 | (1) |
|
|
78 | (4) |
|
3.3.3 2-D FD for Transmission Lines with Dielectric Materials |
|
|
82 | (2) |
|
|
84 | (25) |
|
|
84 | (1) |
|
3.4.2 Yee Cell and 2-D FDTD Method for TM Polarized Fields |
|
|
85 | (3) |
|
3.4.3 Conductive Materials |
|
|
88 | (1) |
|
3.4.4 Anisotropic Materials |
|
|
89 | (1) |
|
3.4.5 Stability Criterion |
|
|
89 | (1) |
|
|
90 | (1) |
|
3.4.7 Scattering Problems |
|
|
90 | (6) |
|
|
96 | (3) |
|
3.4.9 Near Field to Far Field Transformation |
|
|
99 | (6) |
|
3.4.10 Other Types of Postprocessing |
|
|
105 | (2) |
|
|
107 | (2) |
|
|
109 | (3) |
|
|
111 | (1) |
|
3.6 Perfectly Matched Layer |
|
|
112 | (6) |
|
3.6.1 UPML for the TMz Polarization |
|
|
115 | (3) |
|
|
118 | (1) |
|
|
119 | (4) |
|
Chapter 4 Numerical Integration |
|
|
123 | (28) |
|
4.1 Types of Integration Rules |
|
|
124 | (1) |
|
4.2 Classical Polynomial Rules |
|
|
125 | (8) |
|
4.2.1 Error Analysis of the Midpoint Rule |
|
|
126 | (3) |
|
4.2.2 Higher-Order Polynomial Rules |
|
|
129 | (2) |
|
|
131 | (2) |
|
4.2.4 Romberg Integration |
|
|
133 | (1) |
|
|
133 | (6) |
|
4.3.1 Orthogonal Polynomials and Gaussian Quadrature |
|
|
135 | (3) |
|
4.3.2 Gauss-Legendre Quadrature (w(x) = 1) |
|
|
138 | (1) |
|
4.4 Nonclassical Gaussian Quadrature Rules |
|
|
139 | (4) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (1) |
|
4.6 Other Methods for Singular Integrands |
|
|
143 | (3) |
|
4.6.1 Singularity Subtraction |
|
|
143 | (2) |
|
4.6.2 Transformation Rules |
|
|
145 | (1) |
|
4.7 Multidimensional Integrals |
|
|
146 | (2) |
|
4.8 MATLAB's Built-in Numerical Integration Functions |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (2) |
|
Chapter 5 Integral Equations and the Method of Moments |
|
|
151 | (60) |
|
|
151 | (3) |
|
5.1.1 Solving Integral Equations Numerically |
|
|
153 | (1) |
|
5.2 Integral Equations in Electromagnetics |
|
|
154 | (8) |
|
5.2.1 Electric Field Integral Equation, 2-D Transverse Magnetic Polarization (TM-EFIE) |
|
|
155 | (2) |
|
5.2.2 Electric Field Integral Equation, 2-D Transverse Electric Polarization (TE-EFIE) |
|
|
157 | (1) |
|
5.2.3 Magnetic Field Integral Equation (MFIE) |
|
|
158 | (1) |
|
5.2.4 Combined Field Integral Equation (CFIE) |
|
|
158 | (1) |
|
5.2.5 Thin-Wire Integral Equations |
|
|
159 | (3) |
|
5.3 Method of Weighted Residuals |
|
|
162 | (5) |
|
|
164 | (2) |
|
|
166 | (1) |
|
5.4 Method of Moments for the TM-EFIE |
|
|
167 | (14) |
|
|
167 | (1) |
|
|
168 | (1) |
|
5.4.3 Testing Integration |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
5.4.6 Physical Interpretation of the Method of Moments |
|
|
170 | (1) |
|
5.4.7 Mesh Element Density |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (2) |
|
|
175 | (1) |
|
5.4.11 Scattering Amplitude |
|
|
175 | (3) |
|
5.4.12 MoM Implementation |
|
|
178 | (3) |
|
5.5 Accuracy and Efficiency of the Method of Moments |
|
|
181 | (13) |
|
|
181 | (2) |
|
|
183 | (3) |
|
|
186 | (8) |
|
5.6 Dielectric Structures |
|
|
194 | (4) |
|
5.6.1 Volume Method of Moments |
|
|
195 | (3) |
|
5.7 2.5-Dimensional Methods |
|
|
198 | (1) |
|
5.8 3-D Electric Field Integral Equation |
|
|
198 | (9) |
|
|
199 | (1) |
|
5.8.2 Rao-Wilton-Glisson Basis |
|
|
200 | (2) |
|
|
202 | (5) |
|
|
207 | (1) |
|
|
207 | (4) |
|
Chapter 6 Solving Linear Systems |
|
|
211 | (36) |
|
|
212 | (9) |
|
|
212 | (1) |
|
6.1.2 Norms on Linear Spaces |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
6.1.5 Range, Null Space, and Rank |
|
|
215 | (1) |
|
6.1.6 Operator Inverse and Adjoint |
|
|
216 | (1) |
|
6.1.7 Classes of Operators |
|
|
216 | (2) |
|
6.1.8 Eigenvalues and Eigenvectors |
|
|
218 | (1) |
|
|
218 | (1) |
|
6.1.10 Matrix Decompositions |
|
|
218 | (3) |
|
6.1.11 Other Matrix Formulas |
|
|
221 | (1) |
|
6.2 Direct and Iterative Solution Methods |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
224 | (5) |
|
6.4.1 Stationary Iterations |
|
|
225 | (2) |
|
6.4.2 Implementation of Iterative Algorithms |
|
|
227 | (2) |
|
6.5 Krylov Subspace Iterations |
|
|
229 | (10) |
|
6.5.1 Conjugate Gradient Method |
|
|
229 | (2) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
6.5.5 Other Krylov Subspace Methods |
|
|
233 | (1) |
|
6.5.6 Convergence of Krylov Subspace Iterations |
|
|
234 | (4) |
|
|
238 | (1) |
|
|
239 | (5) |
|
|
241 | (2) |
|
6.6.2 Reduced-Order Representations |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
245 | (2) |
|
Chapter 7 Variational Methods and the Rayleigh-Ritz Procedure |
|
|
247 | (12) |
|
7.1 Operators and Functionals |
|
|
248 | (1) |
|
7.2 Variational Principles |
|
|
249 | (6) |
|
7.2.1 Variational Calculus |
|
|
251 | (1) |
|
7.2.2 Euler-Lagrange Equation |
|
|
251 | (2) |
|
7.2.3 Variational Principles for PDEs |
|
|
253 | (1) |
|
7.2.4 Variational Principles for Self-Adjoint, Positive Definite Operators |
|
|
253 | (1) |
|
7.2.5 Functionals in Mathematical Physics |
|
|
253 | (2) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
258 | (1) |
|
Chapter 8 Finite Element Method |
|
|
259 | (38) |
|
8.1 Overview of the Finite Element Method |
|
|
260 | (2) |
|
|
260 | (1) |
|
|
261 | (1) |
|
8.1.3 Variational Principle and Rayleigh-Ritz Procedure |
|
|
261 | (1) |
|
8.1.4 Linear System Solution |
|
|
262 | (1) |
|
8.2 Laplace's Equation: 1-D FEM |
|
|
262 | (10) |
|
8.2.1 Functional Form of the Generalized Laplace Equation |
|
|
263 | (1) |
|
8.2.2 Mesh Representation |
|
|
263 | (1) |
|
8.2.3 Rayleigh-Ritz Procedure |
|
|
264 | (1) |
|
8.2.4 Element Stiffness Matrix |
|
|
265 | (1) |
|
8.2.5 Basis Functions and Shape Functions |
|
|
265 | (2) |
|
8.2.6 Evaluating the Element Stiffness Matrix |
|
|
267 | (1) |
|
8.2.7 Assembly of the Global Stiffness Matrix |
|
|
268 | (1) |
|
8.2.8 Example: Five-Element Mesh |
|
|
269 | (2) |
|
8.2.9 Comparison of FEM and FD |
|
|
271 | (1) |
|
8.2.10 Sparse Matrix and Dense Matrix Methods |
|
|
271 | (1) |
|
8.3 Boundary Conditions for FEM |
|
|
272 | (2) |
|
8.3.1 Boundary Terms in the Functional |
|
|
273 | (1) |
|
8.4 Helmholtz Equation: 2-D FEM |
|
|
274 | (9) |
|
8.4.1 Eigenvalue Problems (Unknown K) |
|
|
276 | (1) |
|
8.4.2 Scattering Problems (Known K) |
|
|
276 | (1) |
|
|
277 | (2) |
|
8.4.4 Basis Functions and Shape Functions |
|
|
279 | (1) |
|
8.4.5 Evaluating Element Matrices |
|
|
280 | (2) |
|
|
282 | (1) |
|
8.5 Finite Element Method-Boundary Element Method (FEM-BEM) |
|
|
283 | (9) |
|
8.5.1 Boundary Element Method |
|
|
284 | (4) |
|
|
288 | (4) |
|
|
292 | (2) |
|
|
294 | (1) |
|
|
294 | (3) |
|
Chapter 9 Optimization Methods |
|
|
297 | (14) |
|
|
297 | (2) |
|
9.1.1 Optimization Problems |
|
|
298 | (1) |
|
9.1.2 Local and Global Optimization |
|
|
298 | (1) |
|
9.2 Classes of Optimization Methods |
|
|
299 | (4) |
|
9.2.1 Common Optimization Algorithms |
|
|
301 | (2) |
|
9.2.2 Gradient and Gradient-Free Methods |
|
|
303 | (1) |
|
9.3 One-Dimensional Optimization |
|
|
303 | (3) |
|
9.3.1 Golden Section Search |
|
|
304 | (1) |
|
9.3.2 Tolerance Parameter |
|
|
305 | (1) |
|
9.3.3 Inverse Quadratic Interpolation |
|
|
305 | (1) |
|
|
306 | (1) |
|
9.4 Nelder-Mead Simplex Method |
|
|
306 | (4) |
|
|
306 | (1) |
|
9.4.2 Simplex Transformations |
|
|
307 | (1) |
|
|
308 | (1) |
|
9.4.4 Implementation Details |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
310 | (1) |
|
Chapter 10 Inverse Problems |
|
|
311 | (24) |
|
|
311 | (1) |
|
10.2 Types of Inverse Problems |
|
|
311 | (3) |
|
10.2.1 Inverse Scattering |
|
|
312 | (1) |
|
|
312 | (1) |
|
10.2.3 Inverse Source Problems |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
314 | (4) |
|
|
315 | (1) |
|
|
316 | (1) |
|
10.3.3 Types of Inverse Scattering Methods |
|
|
316 | (2) |
|
10.4 Born Approximation Methods |
|
|
318 | (8) |
|
10.4.1 Iterated Born Approximation |
|
|
321 | (1) |
|
10.4.2 Diffraction Tomography |
|
|
321 | (1) |
|
10.4.3 Holographic Backpropagation Tomography |
|
|
322 | (2) |
|
10.4.4 Implementation Details |
|
|
324 | (1) |
|
|
325 | (1) |
|
10.5 Regularized Sampling |
|
|
326 | (5) |
|
10.5.1 Discretization of the Regularized Sampling Equation |
|
|
328 | (1) |
|
10.5.2 Implementation Details |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
332 | (3) |
Index |
|
335 | |