Preface and acknowledgments |
|
xiii | |
1 Introduction |
|
1 | (8) |
|
|
2 | (3) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (3) |
2 The governing equations |
|
9 | (20) |
|
2.1 The Navier-Stokes equations |
|
|
9 | (5) |
|
2.1.1 Basic form of conservation laws |
|
|
10 | (1) |
|
2.1.2 Conservation of mass |
|
|
11 | (1) |
|
2.1.3 Conservation of momentum |
|
|
11 | (1) |
|
2.1.4 Conservation of energy |
|
|
12 | (1) |
|
2.1.5 Equation of state and Sutherland law |
|
|
13 | (1) |
|
2.2 Nondimensionalization |
|
|
14 | (2) |
|
|
16 | (1) |
|
2.4 Simplifications of the Navier-Stokes equations |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.5.1 Properties of the Euler equations |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.7 Boundary and initial conditions |
|
|
20 | (2) |
|
|
20 | (1) |
|
2.7.2 Fixed wall conditions |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.7.4 Periodic boundaries |
|
|
21 | (1) |
|
2.7.5 Farfield boundaries |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.9 Laminar and turbulent flows |
|
|
22 | (7) |
|
|
24 | (9) |
|
|
24 | (1) |
|
2.9.1.2 Large Eddy Simulation |
|
|
25 | (2) |
|
2.9.1.3 Detached Eddy Simulation |
|
|
27 | (2) |
3 The space discretization |
|
29 | (36) |
|
3.1 Structured and unstructured grids |
|
|
30 | (1) |
|
3.2 Finite volume methods |
|
|
31 | (2) |
|
3.3 The line integrals and numerical flux functions |
|
|
33 | (10) |
|
3.3.1 Discretization of the inviscid fluxes |
|
|
34 | (5) |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (1) |
|
3.3.3 Discretization of the viscous fluxes |
|
|
40 | (3) |
|
3.4 Convergence theory for finite volume methods |
|
|
43 | (2) |
|
3.4.1 Hyperbolic conservation laws |
|
|
43 | (1) |
|
3.4.2 Parabolic conservation laws |
|
|
44 | (1) |
|
|
45 | (1) |
|
3.6 Finite volume methods of higher order |
|
|
45 | (4) |
|
3.6.1 Convergence theory for higher-order finite volume schemes |
|
|
45 | (1) |
|
3.6.2 Linear reconstruction |
|
|
46 | (1) |
|
|
47 | (2) |
|
3.7 Discontinuous Galerkin methods |
|
|
49 | (9) |
|
3.7.1 Polymorphic modal-nodal scheme |
|
|
53 | (1) |
|
3.7.2 DG Spectral Element Method |
|
|
54 | (2) |
|
3.7.3 Discretization of the viscous fluxes |
|
|
56 | (2) |
|
3.8 Convergence theory for DG methods |
|
|
58 | (1) |
|
|
58 | (5) |
|
|
59 | (1) |
|
3.9.2 Stability and the SBP-SAT technique |
|
|
59 | (1) |
|
|
60 | (1) |
|
3.9.4 Inflow and outflow boundaries |
|
|
61 | (1) |
|
3.9.5 Periodic boundaries |
|
|
62 | (1) |
|
|
63 | (2) |
4 Time integration schemes |
|
65 | (30) |
|
4.1 Order of convergence and order of consistency |
|
|
66 | (1) |
|
|
66 | (6) |
|
4.2.1 The linear test equation, A- and L-stability |
|
|
67 | (1) |
|
4.2.2 TVD stability and SSP methods |
|
|
68 | (1) |
|
4.2.3 The CFL condition, von Neumann stability analysis and related topics |
|
|
69 | (3) |
|
|
72 | (2) |
|
4.4 Backward differentiation formulas |
|
|
74 | (1) |
|
|
75 | (7) |
|
4.5.1 Explicit Runge-Kutta methods |
|
|
77 | (1) |
|
4.5.2 Fully implicit RK methods |
|
|
78 | (1) |
|
|
78 | (3) |
|
4.5.4 Additive Runge-Kutta methods |
|
|
81 | (1) |
|
4.6 Rosenbrock-type methods |
|
|
82 | (4) |
|
4.6.1 Exponential integrators |
|
|
85 | (1) |
|
4.7 Adaptive time step size selection |
|
|
86 | (3) |
|
|
89 | (2) |
|
4.9 Alternatives to the method of lines |
|
|
91 | (3) |
|
|
91 | (1) |
|
4.9.2 Local time stepping Predictor-Corrector-DG |
|
|
91 | (3) |
|
4.10 Parallelization in time |
|
|
94 | (1) |
5 Solving equation systems |
|
95 | (50) |
|
5.1 The nonlinear systems |
|
|
95 | (2) |
|
|
97 | (2) |
|
5.3 Rate of convergence and error |
|
|
99 | (1) |
|
|
99 | (2) |
|
|
101 | (4) |
|
5.5.1 Stationary linear methods |
|
|
101 | (2) |
|
5.5.2 Nonlinear variants of stationary methods |
|
|
103 | (2) |
|
|
105 | (22) |
|
5.6.1 Multigrid for linear problems |
|
|
106 | (2) |
|
5.6.2 Full Approximation Schemes |
|
|
108 | (2) |
|
|
110 | (5) |
|
5.6.3.1 Pseudo time iterations and dual time stepping |
|
|
110 | (5) |
|
|
115 | (1) |
|
5.6.4 Residual averaging and smoothed aggregation |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (1) |
|
5.6.7 Analysis and construction |
|
|
118 | (9) |
|
5.6.7.1 Smoothing factors |
|
|
118 | (1) |
|
|
119 | (2) |
|
5.6.7.3 Optimizing the spectral radius |
|
|
121 | (1) |
|
|
121 | (2) |
|
5.6.7.5 Numerical results |
|
|
123 | (2) |
|
5.6.7.6 Local Fourier analysis |
|
|
125 | (1) |
|
5.6.7.7 Generalized locally Toeplitz sequences |
|
|
126 | (1) |
|
|
127 | (7) |
|
5.7.1 Simplified Newton's method |
|
|
129 | (1) |
|
5.7.2 Methods of Newton type |
|
|
129 | (1) |
|
5.7.3 Inexact Newton methods |
|
|
130 | (1) |
|
5.7.4 Choice of initial guess |
|
|
131 | (1) |
|
5.7.5 Globally convergent Newton methods |
|
|
132 | (1) |
|
5.7.6 Computation and storage of the Jacobian |
|
|
133 | (1) |
|
5.8 Krylov subspace methods |
|
|
134 | (4) |
|
5.8.1 GMRES and related methods |
|
|
135 | (3) |
|
|
137 | (1) |
|
|
138 | (1) |
|
5.9 Jacobian-free Newton-Krylov methods |
|
|
138 | (2) |
|
5.10 Comparison of GMRES and BiCGSTAB |
|
|
140 | (2) |
|
5.11 Comparison of variants of Newton's method |
|
|
142 | (3) |
6 Preconditioning linear systems |
|
145 | (18) |
|
6.1 Preconditioning for JFNK schemes |
|
|
146 | (1) |
|
6.2 Specific preconditioners |
|
|
147 | (8) |
|
6.2.1 Block preconditioners |
|
|
147 | (1) |
|
6.2.2 Stationary linear methods |
|
|
147 | (1) |
|
|
148 | (1) |
|
6.2.4 ILU preconditioning |
|
|
149 | (1) |
|
6.2.5 Multilevel preconditioners |
|
|
150 | (1) |
|
6.2.6 Nonlinear preconditioners |
|
|
151 | (1) |
|
6.2.7 Other preconditioners |
|
|
152 | (1) |
|
6.2.8 Comparison of preconditioners |
|
|
153 | (2) |
|
6.3 Preconditioning in parallel |
|
|
155 | (1) |
|
6.4 Sequences of linear systems |
|
|
156 | (4) |
|
6.4.1 Freezing and recomputing |
|
|
156 | (1) |
|
6.4.2 Triangular preconditioner updates |
|
|
156 | (3) |
|
|
159 | (1) |
|
6.5 Discretization for the preconditioner |
|
|
160 | (3) |
7 The final schemes |
|
163 | (14) |
|
|
164 | (2) |
|
|
166 | (2) |
|
|
168 | (1) |
|
7.4 Efficiency of finite volume schemes |
|
|
168 | (3) |
|
7.5 Efficiency of Discontinuous Galerkin schemes |
|
|
171 | (6) |
|
7.5.1 Polymorphic modal-nodal DG |
|
|
171 | (3) |
|
|
174 | (3) |
8 Thermal Fluid Structure Interaction |
|
177 | (12) |
|
|
177 | (1) |
|
8.2 The mathematical model |
|
|
178 | (2) |
|
|
180 | (1) |
|
8.4 Coupled time integration |
|
|
180 | (1) |
|
8.5 Dirichlet-Neumann iteration |
|
|
181 | (2) |
|
8.5.1 Extrapolation from time integration |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (5) |
|
8.7.1 Cooling of a flanged shaft |
|
|
184 | (5) |
A Test problems |
|
189 | (6) |
|
|
189 | (1) |
|
A.2 Supersonic flow around a cylinder |
|
|
189 | (1) |
|
|
190 | (1) |
|
A.4 Vortex shedding behind a sphere |
|
|
191 | (4) |
B Coefficients of time integration methods |
|
195 | (6) |
Bibliography |
|
201 | (24) |
Index |
|
225 | |