Preface |
|
xiii | |
|
1 Data Conditioning for Medical Imaging |
|
|
1 | (32) |
|
|
|
|
|
|
|
|
2 | (1) |
|
1.2 Importance of Image Preprocessing |
|
|
2 | (1) |
|
1.3 Introduction to Digital Medical Imaging |
|
|
3 | (3) |
|
1.3.1 Types of Medical Images for Screening |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.3.1.2 Computed Tomography (CT) Scan |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.3.1.4 Magnetic Resonance Imaging (MRI) |
|
|
5 | (1) |
|
1.3.1.5 Positron Emission Tomography (PET) Scan |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.3.1.8 Infrared Thermography |
|
|
6 | (1) |
|
1.4 Preprocessing Techniques of Medical Imaging Using Python |
|
|
6 | (7) |
|
1.4.1 Medical Image Preprocessing |
|
|
6 | (1) |
|
1.4.1.1 Reading the Image |
|
|
7 | (1) |
|
1.4.1.2 Resizing the Image |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.4.1.4 Filtering and Smoothing |
|
|
9 | (2) |
|
1.4.1.5 Image Segmentation |
|
|
11 | (2) |
|
1.5 Medical Image Processing Using Python |
|
|
13 | (7) |
|
1.5.1 Medical Image Processing Methods |
|
|
16 | (1) |
|
|
17 | (2) |
|
1.5.1.2 Image Enhancement |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.5.1.4 Image Visualization |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.6 Feature Extraction Using Python |
|
|
20 | (4) |
|
1.7 Case Study on Throat Cancer |
|
|
24 | (5) |
|
|
24 | (1) |
|
|
25 | (1) |
|
1.7.1.2 The Adaptive Deep Learning Method Proposed |
|
|
25 | (2) |
|
1.7.2 Results and Findings |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (4) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
2 Detection of Pneumonia Using Machine Learning and Deep Learning Techniques: An Analytical Study |
|
|
33 | (24) |
|
|
|
|
|
|
|
33 | (2) |
|
|
35 | (6) |
|
|
41 | (2) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
2.4 Detection of Lung Diseases Using Machine Learning and Deep Learning Techniques |
|
|
43 | (9) |
|
2.4.1 Dataset Description |
|
|
43 | (1) |
|
2.4.2 Evaluation Platform |
|
|
44 | (1) |
|
|
44 | (2) |
|
2.4.4 Model Evaluation of CNN Classifier |
|
|
46 | (1) |
|
|
47 | (1) |
|
2.4.6 Parameter Optimization |
|
|
47 | (3) |
|
2.4.7 Performance Metrics |
|
|
50 | (2) |
|
|
52 | (5) |
|
|
53 | (4) |
|
3 Contamination Monitoring System Using IOT and GIS |
|
|
57 | (16) |
|
|
|
|
|
|
58 | (1) |
|
|
58 | (2) |
|
|
60 | (1) |
|
3.4 Experimentation and Results |
|
|
61 | (3) |
|
|
61 | (3) |
|
|
64 | (6) |
|
|
70 | (3) |
|
|
71 | (1) |
|
|
71 | (2) |
|
4 Video Error Concealment Using Particle Swarm Optimization |
|
|
73 | (26) |
|
|
|
|
74 | (1) |
|
4.2 Proposed Research Work Overview |
|
|
75 | (1) |
|
|
75 | (2) |
|
4.4 Frame Replacement Video Error Concealment Algorithm |
|
|
77 | (1) |
|
|
77 | (6) |
|
4.5.1 Particle Swarm Optimization |
|
|
78 | (1) |
|
4.5.2 Spatio-Temporal Video Error Concealment Method |
|
|
78 | (1) |
|
4.5.3 Proposed Modified Particle Swarm Optimization Algorithm |
|
|
79 | (4) |
|
|
83 | (12) |
|
4.6.1 Single Frame With Block Error Analysis |
|
|
85 | (1) |
|
4.6.2 Single Frame With Random Error Analysis |
|
|
86 | (2) |
|
4.6.3 Multiple Frame Error Analysis |
|
|
88 | (3) |
|
4.6.4 Sequential Frame Error Analysis |
|
|
91 | (2) |
|
4.6.5 Subjective Video Quality Analysis for Color Videos |
|
|
93 | (1) |
|
4.6.6 Scene Change of Videos |
|
|
94 | (1) |
|
|
95 | (2) |
|
|
97 | (2) |
|
|
97 | (2) |
|
5 Enhanced Image Fusion with Guided Filters |
|
|
99 | (12) |
|
|
|
|
100 | (1) |
|
|
100 | (2) |
|
|
102 | (2) |
|
|
102 | (2) |
|
5.3.2 Steps of the Proposed Methodology |
|
|
104 | (1) |
|
|
104 | (4) |
|
|
104 | (1) |
|
5.4.2 Peak Signal-to-Noise Ratio |
|
|
105 | (2) |
|
5.4.3 Root Mean Square Error |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (3) |
|
|
109 | (2) |
|
6 Deepfake Detection Using LSTM-Based Neural Network |
|
|
111 | (10) |
|
|
|
|
|
|
|
111 | (1) |
|
|
112 | (1) |
|
6.2.1 Deepfake Generation |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
6.3.1 AI-Generated Fake Face Videos by Detecting Eye Blinking |
|
|
113 | (1) |
|
6.3.2 Detection Using Inconsistence in Head Pose |
|
|
113 | (1) |
|
6.3.3 Exploiting Visual Artifacts |
|
|
113 | (1) |
|
|
114 | (3) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
119 | (2) |
|
|
119 | (2) |
|
7 Classification of Fetal Brain Abnormalities with MRI Images: A Survey |
|
|
121 | (26) |
|
|
|
|
121 | (2) |
|
|
123 | (6) |
|
7.3 Evaluation of Related Research |
|
|
129 | (1) |
|
7.4 General Framework for Fetal Brain Abnormality Classification |
|
|
129 | (12) |
|
|
130 | (1) |
|
7.4.2 Image Pre-Processing |
|
|
130 | (1) |
|
7.4.2.1 Image Thresholding |
|
|
130 | (1) |
|
7.4.2.2 Morphological Operations |
|
|
131 | (1) |
|
7.4.2.3 Hole Filling and Mask Generation |
|
|
131 | (1) |
|
7.4.2.4 MRI Segmentation for Fetal Brain Extraction |
|
|
132 | (1) |
|
|
132 | (1) |
|
7.4.3.1 Gray-Level Co-Occurrence Matrix |
|
|
133 | (1) |
|
7.4.3.2 Discrete Wavelet Transformation |
|
|
133 | (1) |
|
|
134 | (1) |
|
7.4.3.4 Discrete Statistical Descriptive Features |
|
|
134 | (1) |
|
|
134 | (1) |
|
7.4.4.1 Principal Component Analysis |
|
|
135 | (1) |
|
7.4.4.2 Linear Discriminant Analysis |
|
|
136 | (1) |
|
7.4.4.3 Non-Linear Dimensionality Reduction Techniques |
|
|
137 | (1) |
|
7.4.5 Classification by Using Machine Learning Classifiers |
|
|
137 | (1) |
|
7.4.5.1 Support Vector Machine |
|
|
138 | (1) |
|
7.4.5.2 K-Nearest Neighbors |
|
|
138 | (1) |
|
|
139 | (1) |
|
7.4.5.4 Linear Discriminant Analysis |
|
|
139 | (1) |
|
|
139 | (1) |
|
7.4.5.6 Decision Tree (DT) |
|
|
140 | (1) |
|
7.4.5.7 Convolutional Neural Network |
|
|
140 | (1) |
|
7.5 Performance Metrics for Research in Fetal Brain Analysis |
|
|
141 | (1) |
|
|
142 | (1) |
|
7.7 Conclusion and Future Works |
|
|
142 | (5) |
|
|
143 | (4) |
|
8 Analysis of COVID-19 Data Using Machine Learning Algorithm |
|
|
147 | (12) |
|
|
|
|
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (3) |
|
8.4 Analysis of COVID-19-Confirmed Cases in India |
|
|
152 | (4) |
|
8.4.1 Analysis to Highest COVID-19-Confirmed Case States in India |
|
|
153 | (1) |
|
8.4.2 Analysis to Highest COVID-19 Death Rate States in India |
|
|
153 | (1) |
|
8.4.3 Analysis to Highest COVID-19 Cured Case States in India |
|
|
154 | (1) |
|
8.4.4 Analysis of Daily COVID-19 Cases in Maharashtra State |
|
|
155 | (1) |
|
8.5 Linear Regression Used for Predicting Daily Wise COVID-19 Cases in Maharashtra |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
157 | (2) |
|
9 Intelligent Recommendation System to Evaluate Teaching Faculty Performance Using Adaptive Collaborative Filtering |
|
|
159 | (12) |
|
|
|
|
160 | (2) |
|
|
162 | (2) |
|
9.3 Recommender Systems and Collaborative Filtering |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
168 | (3) |
|
|
168 | (3) |
|
10 Virtual Moratorium System |
|
|
171 | (14) |
|
|
|
|
|
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
10.2.1 Virtual Assistant--BLU |
|
|
172 | (1) |
|
|
173 | (1) |
|
10.3 Methodologies of Problem Solving |
|
|
173 | (1) |
|
|
174 | (2) |
|
|
174 | (1) |
|
10.4.2 Android Application |
|
|
175 | (1) |
|
|
175 | (1) |
|
10.5 Detailed Flow of Proposed Work |
|
|
176 | (2) |
|
10.5.1 System Architecture |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (3) |
|
|
178 | (1) |
|
|
178 | (2) |
|
10.6.3 Database Architecture |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (2) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (2) |
|
11 Efficient Land Cover Classification for Urban Planning |
|
|
185 | (10) |
|
|
|
|
185 | (4) |
|
|
189 | (2) |
|
11.3 Proposed Methodology |
|
|
191 | (1) |
|
|
192 | (3) |
|
|
192 | (3) |
|
12 Data-Driven Approches for Fake News Detection on Social Media Platforms: Review |
|
|
195 | (12) |
|
|
|
|
196 | (1) |
|
|
196 | (5) |
|
12.3 Problem Statement and Objectives |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
12.4 Proposed Methodology |
|
|
202 | (2) |
|
|
202 | (1) |
|
12.4.2 Feature Extraction |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (3) |
|
|
204 | (3) |
|
13 Distance Measurement for Object Detection for Automotive Applications Using 3D Density-Based Clustering |
|
|
207 | (20) |
|
|
|
|
|
|
208 | (2) |
|
|
210 | (3) |
|
13.3 Distance Measurement Using Stereo Vision |
|
|
213 | (5) |
|
13.3.1 Calibration of the Camera |
|
|
215 | (1) |
|
13.3.2 Stereo Image Rectification |
|
|
215 | (1) |
|
13.3.3 Disparity Estimation and Stereo Matching |
|
|
216 | (1) |
|
13.3.4 Measurement of Distance |
|
|
217 | (1) |
|
13.4 Object Segmentation in Depth Map |
|
|
218 | (5) |
|
13.4.1 Formation of Depth Map |
|
|
218 | (1) |
|
13.4.2 Density-Based in 3D Object Grouping Clustering |
|
|
218 | (1) |
|
13.4.3 Layered Images Object Segmentation |
|
|
219 | (2) |
|
13.4.3.1 Image Layer Formation |
|
|
221 | (1) |
|
13.4.3.2 Determination of Object Boundaries |
|
|
222 | (1) |
|
|
223 | (4) |
|
|
224 | (3) |
|
14 Real-Time Depth Estimation Using BLOB Detection/Contour Detection |
|
|
227 | (30) |
|
|
|
|
|
227 | (2) |
|
14.2 Estimation of Depth Using Blob Detection |
|
|
229 | (5) |
|
14.2.1 Grayscale Conversion |
|
|
230 | (1) |
|
|
231 | (1) |
|
14.2.3 Image Subtraction in Case of Input with Background |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (7) |
|
|
234 | (1) |
|
14.3.2 Blob Classification |
|
|
235 | (1) |
|
|
236 | (2) |
|
14.3.2.2 Centroid Using Image Moments |
|
|
238 | (1) |
|
|
238 | (3) |
|
|
241 | (1) |
|
14.5 Experimental Results |
|
|
241 | (10) |
|
|
251 | (6) |
|
|
255 | (2) |
Index |
|
257 | |